

Welcome to FinRL Library!

[image: _images/logo_transparent_background.png]
 [https://github.com/AI4Finance-Foundation/FinRL]Disclaimer: Nothing herein is financial advice, and NOT a recommendation to trade real money. Please use common sense and always first consult a professional before trading or investing.

AI4Finance community provides this demonstrative and educational resource, in order to efficiently automate trading. FinRL is the first open source framework for financial reinforcement learning.

Reinforcement learning (RL) trains an agent to solve tasks by trial and error, while DRL uses deep neural networks as function approximators. DRL balances exploration (of uncharted territory) and exploitation (of current knowledge), and has been recognized as a competitive edge for automated trading. DRL framework is powerful in solving dynamic decision making problems by learning through interactions with an unknown environment, thus exhibiting two major advantages: portfolio scalability and market model independence. Automated trading is essentially making dynamic decisions, namely to decide where to trade, at what price, and what quantity, over a highly stochastic and complex stock market. Taking many complex financial factors into account, DRL trading agents build a multi-factor model and provide algorithmic trading strategies, which are difficult for human traders.

FinRL [https://github.com/AI4Finance-Foundation/FinRL] provides a framework that supports various markets, SOTA DRL algorithms, benchmarks of many quant finance tasks, live trading, etc.

Join or discuss FinRL with us: AI4Finance mailing list [https://groups.google.com/u/1/g/ai4finance].

Feel free to leave us feedback: report bugs using Github issues [https://github.com/AI4Finance-LLC/FinRL-Library/issues] or discuss FinRL development in the Slack Channel.

[image: _images/join_slack.png]
 [https://join.slack.com/t/ai4financeworkspace/shared_invite/zt-jyaottie-hHqU6TdvuhMHHAMXaLw_~w]

Getting Started

	Introduction

	First Glance

	Three-layer Architecture

	Installation

	Quick Start

FinRL-Meta

	Background

	Overview

	Data Layer

	Environment Layer

	Benchmark

Tutorials

	Tutorials Guide
	1-Introduction

	2-Advance

	3-Practical

	4-Optimization

	5-Others

	1-Introduction

	2-Advance

	3-Practical

	4-Optimization

	5-Others

Developer Guide

	File Architecture

	Development Guide

	Contributing Guidelines

Reference

	Publications

	External Sources

FAQ

	FAQ
	Outline

	1-Inputs and datasets

	2-Code and implementation

	3-Model evaluation

	4-Miscellaneous

	5-Common issues/bugs

Introduction

Table of Contents

	Introduction

Design Principles

	Plug-and-Play (PnP): modularity; handle different markets (say T0 vs. T+1).

	Completeness and universal: multiple markets; various data sources (APIs, Excel, etc); user-friendly variables.

	Avoid hard-coded parameters.

	Closing the sim-real gap using the “training-testing-trading” pipeline: simulation for training and connecting real-time APIs for testing/trading.

	Efficient data sampling: accelerate the data sampling process is the key to DRL training! From the ElegantRL project. We know that multi-processing is powerful to reduce the training time (scheduling between CPU + GPU).

	Transparency: a virtual env that is invisible to the upper layer.

	Flexibility and extensibility: inheritance might be helpful here.

Contributions

	FinRL is an open source framework for financial reinforcement learning. Trading environments incorporating market frictions are provided.

	Trading tasks accompanied by hands-on tutorials are available in a beginner-friendly and reproducible fashion. Customization is feasible.

	FinRL has good scalability, with fine-tuned state-of-the-art DRL algorithms. Adjusting the implementations to the rapid changing stock market is well supported.

	Typical use cases are selected to establish benchmarks for the quantitative finance community. Standard backtesting and evaluation metrics are also provided for easy and effective performance evaluation.

With FinRL library, the implementation of powerful DRL trading strategies becomes more accessible, efficient and delightful.

First Glance

To quickly understand what is FinRL and how it works, you can go through the series Stock_NeurIPS2018, including Stock_NeurIPS2018_Data.ipynb, Stock_NeurIPS2018_Train.ipynb, Stock_NeurIPS2018_Backtest.ipynb in our examples directory (https://github.com/AI4Finance-Foundation/FinRL/tree/master/examples)

This is how we use Deep Reinforcement Learning for Stock Trading from scratch.

Tip

Run the code step by step at Google Colab [https://colab.research.google.com/github/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/Stock_NeurIPS2018_SB3.ipynb].

The notebook and the following result is based on our paper Practical deep reinforcement learning approach for stock trading Xiong, Zhuoran, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar Walid. “Practical deep reinforcement learning approach for stock trading.” arXiv preprint arXiv:1811.07522 (2018).

[image: ../_images/result_NeurIPS.png]

Three-layer Architecture

After the first glance of how to establish our task on stock trading using DRL, know we are introducing the most central idea of FinRL.

FinRL library consists of three layers: market environments (FinRL-Meta), DRL agents and applications. The lower layer provides APIs for the upper layer, making the lower layer transparent to the upper layer. The agent layer interacts with the environment layer in an exploration-exploitation manner, whether to repeat prior working-well decisions or to make new actions hoping to get greater cumulative rewards.

[image: ../_images/finrl_framework.png]
Our construction has following advantages:

Modularity: Each layer includes several modules and each module defines a separate function. One can select certain modules from a layer to implement his/her stock trading task. Furthermore, updating existing modules is possible.

Simplicity, Applicability and Extendibility: Specifically designed for automated stock trading, FinRL presents DRL algorithms as modules. In this way, FinRL is made accessible yet not demanding. FinRL provides three trading tasks as use cases that can be easily reproduced. Each layer includes reserved interfaces that allow users to develop new modules.

Better Market Environment Modeling: We build a trading simulator that replicates live stock markets and provides backtesting support that incorporates important market frictions such as transaction cost, market liquidity and the investor’s degree of risk-aversion. All of those are crucial among key determinants of net returns.

A high level view of how FinRL construct the problem in DRL:

[image: ../_images/finrl_overview_drl.png]
Please refer to the following pages for more specific explanation:

	1. Stock Market Environments

	2. DRL Agents

	3. Applications

1. Stock Market Environments

Considering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a Markov Decision Process (MDP) problem. FinRL-Meta first preprocesses the market data, and then builds stock market environments. The environemnt observes the change of stock price and multiple features, and the agent takes an action and receives the reward from the environment, and finally the agent adjusts its strategy accordingly. By interacting with the environment, the smart agent will derive a trading strategy to maximize the long-term accumulated rewards (also named as Q-value).

Our trading environments, based on OpenAI Gym, simulate the markets with real market data, using time-driven simulation. FinRL library strives to provide trading environments constructed by datasets across many stock exchanges.

In the Tutorials and Examples section, we will illustrate the detailed MDP formulation with the components of the reinforcement learning environment.

The application of DRL in finance is different from that in other fields, such as playing chess and card games; the latter inherently have clearly defined rules for environments. Various finance markets require different DRL algorithms to get the most appropriate automated trading agent. Realizing that setting up a training environment is time-consuming and laborious work, FinRL provides market environments based on representative listings, including NASDAQ-100, DJIA, S&P 500, SSE 50, CSI 300, and HSI, plus a user-defined environment. Thus, this library frees users from tedious and time-consuming data pre-processing workload. We know that users may want to train trading agents on their own data sets. FinRL library provides convenient support to user-imported data and allows users to adjust the granularity of time steps. We specify the format of the data. According to our data format instructions, users only need to pre-process their data sets.

[image: ../../_images/finrl_meta_dataops.png]
We follow the DataOps paradigm in the data layer.

	We establish a standard pipeline for financial data engineering in RL, ensuring data of different formats from different sources can be incorporated in a unified framework.

	We automate this pipeline with a data processor, which can access data, clean data, and extract features from various data sources with high quality and efficiency. Our data layer provides agility to model deployment.

	We employ a training-testing-trading pipeline. The DRL agent first learns from the training environment and is then validated in the validation environment for further adjustment. Then the validated agent is tested in historical datasets. Finally, the tested agent will be deployed in paper trading or live trading markets. First, this pipeline solves the information leakage problem because the trading data are never leaked when adjusting agents. Second, a unified pipeline allows fair comparisons among different algorithms and strategies.

[image: ../../_images/timeline.png]
For data processing and building environment for DRL in finance, AI4Finance has maintained another project: FinRL-Meta [https://github.com/AI4Finance-Foundation/FinRL-Meta].

2. DRL Agents

FinRL contains fine-tuned standard DRL algorithms in ElegantRL, Stable Baseline 3, and RLlib. ElegantRL is a scalable and elastic DRL library that maintained by AI4Finance, with faster and more stable performance than Stable Baseline 3 and RLlib. In the Three-Layer Architecture section, there will be detailed explanation about how ElegantRL accomplish its role in FinRL perfectly. If interested, please refer to ElegantRL’s GitHub page [https://github.com/AI4Finance-Foundation/ElegantRL] or documentation [https://elegantrl.readthedocs.io].

With those three powerful DRL libraries, FinRL provides the following algorithms for users:

[image: start/image/alg_compare.png]
As mentioned in the introduction, FinRL’s DRL agents are built by fine-tuned standard DRL algorithms depending on three famous DRL library: ElegantRL, Stable Baseline 3, and RLlib.

The supported algorithms include: DQN, DDPG, Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users to design their own DRL algorithms by adapting these DRL algorithms, e.g., Adaptive DDPG, or employing ensemble methods. The comparison of DRL algorithms is shown in the table bellow:

[image: ../../_images/alg_compare.png]
Users are able to choose their favorite DRL agents for training. Different DRL agents might have different performance in various tasks.

ElegantRL: DRL library

[image: ../../_images/ElegantRL_icon.jpeg]
 [https://github.com/AI4Finance-Foundation/ElegantRL]One sentence summary of reinforcement learning (RL): in RL, an agent learns by continuously interacting with an unknown environment, in a trial-and-error manner, making sequential decisions under uncertainty and achieving a balance between exploration (new territory) and exploitation (using knowledge learned from experiences).

Deep reinforcement learning (DRL) has great potential to solve real-world problems that are challenging to humans, such as gaming, natural language processing (NLP), self-driving cars, and financial trading. Starting from the success of AlphaGo, various DRL algorithms and applications are emerging in a disruptive manner. The ElegantRL library enables researchers and practitioners to pipeline the disruptive “design, development and deployment” of DRL technology.

The library to be presented is featured with “elegant” in the following aspects:

	Lightweight: core codes have less than 1,000 lines, e.g., helloworld.

	Efficient: the performance is comparable with Ray RLlib.

	Stable: more stable than Stable Baseline 3.

ElegantRL supports state-of-the-art DRL algorithms, including discrete and continuous ones, and provides user-friendly tutorials in Jupyter notebooks. The ElegantRL implements DRL algorithms under the Actor-Critic framework, where an Agent (a.k.a, a DRL algorithm) consists of an Actor network and a Critic network. Due to the completeness and simplicity of code structure, users are able to easily customize their own agents.

Please refer to ElegantRL’s GitHub page [https://github.com/AI4Finance-Foundation/ElegantRL] or documentation [https://elegantrl.readthedocs.io] for more details.

3. Applications

Installation

MAC OS

Step 1: Install Anaconda [https://www.anaconda.com/products/individual]

-Download Anaconda Installer [https://www.anaconda.com/products/individual#macos], Anaconda has everything you need for Python programming.

-Follow Anaconda’s instruction: macOS graphical install [https://docs.anaconda.com/anaconda/install/mac-os/], to install the newest version of Anaconda.

-Open your terminal and type: ‘which python’, it should show:

/Users/your_user_name/opt/anaconda3/bin/python

It means that your Python interpreter path has been pinned to Anaconda’s python version. If it shows something like this:

/Users/your_user_name/opt/anaconda3/bin/python

It means that you still use the default python path, you either fix it and pin it to the anaconda path (try this blog [https://towardsdatascience.com/how-to-successfully-install-anaconda-on-a-mac-and-actually-get-it-to-work-53ce18025f97]), or you can use Anaconda Navigator to open a terminal manually.

Step 2: Install Homebrew [https://brew.sh/]

-Open a terminal and make sure that you have installed Anaconda.

-Install Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

Step 3: Install OpenAI [https://github.com/openai/baselines]

Installation of system packages on Mac requires Homebrew. With Homebrew installed, run the following in your terminal:

brew install cmake openmpi

Step 4: Install FinRL [https://github.com/AI4Finance-Foundation/FinRL]

Since we are still actively updating the FinRL repository, please install the unstable development version of FinRL using pip:

pip install git+https://github.com/AI4Finance-Foundation/FinRL.git

Step 5: Install box2d (if using box2d)

Users can try:

brew install swig
pip install box2d-py
pip install box2d
pip install Box2D

If it raises errors “AttributeError: module ‘_Box2D’ has no attribute ‘RAND_LIMIT_swigconstant’ “, users can try:

pip install box2d box2d-kengz

Step 6: Run FinRL [https://github.com/AI4Finance-Foundation/FinRL]

Download the FinRL repository either use terminal:

git clone https://github.com/AI4Finance-Foundation/FinRL.git

or download it manually

[image: ../_images/download_FinRL.png]
Open Jupyter Notebook through Anaconda Navigator and locate one of the stock trading notebook in FinRL/tutorials you just downloaded. You should be able to run it.

Ubuntu

Step 1: Install Anaconda [https://www.anaconda.com/products/individual]

Please follow the steps in this blog [https://linuxize.com/post/how-to-install-anaconda-on-ubuntu-18-04/]

Step 2: Install OpenAI [https://github.com/openai/baselines]

Open an ubuntu terminal and type:

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev libgl1-mesa-glx swig

Step 3: Install FinRL [https://github.com/AI4Finance-Foundation/FinRL]

Since we are still actively updating the FinRL repository, please install the unstable development version of FinRL using pip:

pip install git+https://github.com/AI4Finance-Foundation/FinRL.git

Step 4: Install box2d (if using box2d)

Step 5: Run FinRL [https://github.com/AI4Finance-Foundation/FinRL]

Download the FinRL repository in terminal:

git clone https://github.com/AI4Finance-Foundation/FinRL.git

Open Jupyter Notebook by typing ‘jupyter notebook’ in your ubuntu terminal.

Locate one of the stock trading notebook in FinRL/tutorials you just downloaded. You should be able to run it.

Windows 10

Prepare for install

	VPN is needed if using YahooFinance in china (pyfolio, elegantRL pip dependencies need pull code, YahooFinance has stopped the service in china). Othewise, please ignore it.

	python version >=3.7

	pip remove zipline, if your system has installed zipline, zipline has conflicts with the FinRL.

Step 1: Clone FinRL [https://github.com/AI4Finance-Foundation/FinRL]

git clone https://github.com/AI4Finance-Foundation/FinRL.git

Step 2: install dependencies

cd FinRL
pip install .

Step 3: Install box2d (if using box2d)

Step 4: test (If using YahooFinance in China, VPN is needed)

python Stock_NeurIPS2018.py

Tips for running error

If the following outputs appear, take it easy, since installation is still successful.

	UserWarning: Module “zipline.assets” not found; multipliers will not be applied to position notionals. Module “zipline.assets” not found; multipliers will not be applied’

If following outputs appear, please ensure that VPN helps to access the YahooFinance

	Failed download: xxxx: No data found for this date range, the stock may be delisted, or the value is missing.

Windows 10 (wsl install)

Step 1: Install Ubuntu on Windows 10

Please check this video for detailed steps:

 Quick Start

Quick Start

Open main.py

 1import os
 2from typing import List
 3from argparse import ArgumentParser
 4from finrl import config
 5from finrl.config_tickers import DOW_30_TICKER
 6from finrl.config import (
 7 DATA_SAVE_DIR,
 8 TRAINED_MODEL_DIR,
 9 TENSORBOARD_LOG_DIR,
 10 RESULTS_DIR,
 11 INDICATORS,
 12 TRAIN_START_DATE,
 13 TRAIN_END_DATE,
 14 TEST_START_DATE,
 15 TEST_END_DATE,
 16 TRADE_START_DATE,
 17 TRADE_END_DATE,
 18 ERL_PARAMS,
 19 RLlib_PARAMS,
 20 SAC_PARAMS,
 21 ALPACA_API_KEY,
 22 ALPACA_API_SECRET,
 23 ALPACA_API_BASE_URL,
 24)
 25
 26# construct environment
 27from finrl.meta.env_stock_trading.env_stocktrading_np import StockTradingEnv
 28
 29
 30def build_parser():
 31 parser = ArgumentParser()
 32 parser.add_argument(
 33 "--mode",
 34 dest="mode",
 35 help="start mode, train, download_data" " backtest",
 36 metavar="MODE",
 37 default="train",
 38)
 39 return parser
 40
 41
 42# "./" will be added in front of each directory
 43def check_and_make_directories(directories: List[str]):
 44 for directory in directories:
 45 if not os.path.exists("./" + directory):
 46 os.makedirs("./" + directory)
 47
 48
 49
 50def main():
 51 parser = build_parser()
 52 options = parser.parse_args()
 53 check_and_make_directories([DATA_SAVE_DIR, TRAINED_MODEL_DIR, TENSORBOARD_LOG_DIR, RESULTS_DIR])
 54
 55 if options.mode == "train":
 56 from finrl import train
 57
 58 env = StockTradingEnv
 59
 60 # demo for elegantrl
 61 kwargs = {} # in current meta, with respect yahoofinance, kwargs is {}. For other data sources, such as joinquant, kwargs is not empty
 62 train(
 63 start_date=TRAIN_START_DATE,
 64 end_date=TRAIN_END_DATE,
 65 ticker_list=DOW_30_TICKER,
 66 data_source="yahoofinance",
 67 time_interval="1D",
 68 technical_indicator_list=INDICATORS,
 69 drl_lib="elegantrl",
 70 env=env,
 71 model_name="ppo",
 72 cwd="./test_ppo",
 73 erl_params=ERL_PARAMS,
 74 break_step=1e5,
 75 kwargs=kwargs,
 76)
 77 elif options.mode == "test":
 78 from finrl import test
 79 env = StockTradingEnv
 80
 81 # demo for elegantrl
 82 kwargs = {} # in current meta, with respect yahoofinance, kwargs is {}. For other data sources, such as joinquant, kwargs is not empty
 83
 84 account_value_erl = test(
 85 start_date=TEST_START_DATE,
 86 end_date=TEST_END_DATE,
 87 ticker_list=DOW_30_TICKER,
 88 data_source="yahoofinance",
 89 time_interval="1D",
 90 technical_indicator_list=INDICATORS,
 91 drl_lib="elegantrl",
 92 env=env,
 93 model_name="ppo",
 94 cwd="./test_ppo",
 95 net_dimension=512,
 96 kwargs=kwargs,
 97)
 98 elif options.mode == "trade":
 99 from finrl import trade
100 env = StockTradingEnv
101 kwargs = {}
102 trade(
103 start_date=TRADE_START_DATE,
104 end_date=TRADE_END_DATE,
105 ticker_list=DOW_30_TICKER,
106 data_source="yahoofinance",
107 time_interval="1D",
108 technical_indicator_list=INDICATORS,
109 drl_lib="elegantrl",
110 env=env,
111 model_name="ppo",
112 API_KEY=ALPACA_API_KEY,
113 API_SECRET=ALPACA_API_SECRET,
114 API_BASE_URL=ALPACA_API_BASE_URL,
115 trade_mode='backtesting',
116 if_vix=True,
117 kwargs=kwargs,
118)
119 else:
120 raise ValueError("Wrong mode.")
121
122
123## Users can input the following command in terminal
124# python main.py --mode=train
125# python main.py --mode=test
126# python main.py --mode=trade
127if __name__ == "__main__":
128 main()

Run the library:

python main.py --mode=train # if train. Use DOW_30_TICKER by default.
python main.py --mode=test # if test. Use DOW_30_TICKER by default.
python main.py --mode=trade # if trade. Users should input your alpaca parameters in config.py

Choices for --mode: start mode, train, download_data, backtest

 Background

Background

Why FinRL-Meta?

Finance is a particularly difficult playground for deep reinforcement learning (DRL). Some existing works already showed great potential of DRL in financial applications. However, establishing high-quality market environments and benchmarks on financial reinforcement learning are challenging and highly demanded. Thus, we proposed and started FinRL-Meta.

Envrionments and Benchmarks

MuJoCo and OpenAI’s XLand are famous libraries in the RL area, they built environments for deep reinforcement learning in robotics, games, and common tasks that are widely used in RL academia and industry. However, they barely provide any high quality environments for financial tasks. FinRL-Meta, previously called Neo-FinRL (near real market environments for data driven financial RL), are working to provide hundreds of market environments and tens of benchmarks for financial reinforcement learning.

Metaverse for financial RL

Achieving the goal of hundreds of market environments and benchmarks discribed above, we are aiming to build a metaverse for financial reinforcement learning. Like XLand, we would provide an open-ended market world with different tasks e.g. stock, cryptocurrency, etc. for agents to explore and learn.

Contribute to finance

We believe in the potential of deep reinforcement learning. And we hope that after we build the metaverse for financial reinforcement learning, our agents have chance to be a market simulator, or to explore risk assessment or market fragility.

 Overview

Overview

Following the de facto standard of OpenAI Gym, we build a universe of market environments for data-driven financial reinforcement learning, namely, FinRL-Meta. We keep the following design principles.

1. Layered structure

[image: ../_images/finrl-meta_overview.png]
We adopt a layered structure for RL in finance, which consists of three layers: data layer, environment layer, and agent layer. Each layer executes its functions and is relatively independent. There are two main advantages:

	Transparency: layers interact through end-to-end interfaces to implement the complete workflow of algorithm trading, achieving high extensibility.

	Modularity: Following the APIs between layers, users can easily customize their own functions to substitute default functions in any layer.

2. DataOps Paradigm

[image: ../_images/finrl_meta_dataops.png]
DataOps paradigm is a set of practices, processes and technologies that combined: automated data engineering & agile development. It helps reduce the cycle time of data engineering and improves data quality. To deal with financial big data, we follow the DataOps paradigm and implement an automatic pipeline:

	Task planning, such as stock trading, portfolio allocation, cryptocurrency trading, etc

	Data processing, including data accessing and cleaning, and feature engineering.

	Training-testing-trading, where DRL agent takes part in.

	Performance monitoring, compare the performance of DRL agent with some baseline trading strategies.

With this pipeline, we are able to continuously produce dynamic market datasets.

3. Training-testing-trading pipeline:

[image: ../_images/timeline.png]
We employ a training-testing-trading pipeline that the DRL approach follows a standard end-to-end pipeline. The DRL agent is first trained in a training dataset and fined-tuned (adjusting hyperparameters) in a testing dataset. Then, backtest the agent (on historical dataset), or deploy in a paper/live trading market.

This pipeline address the information leakage problem by separating the training/testing-trading periods the agent never see the data in backtesting or paper/live trading stage.

And such a unified pipeline allows fair comparison among different algorithms.

4. Plug-and-play

In the development pipeline, we separate market environments from the data layer and the agent layer. Any DRL agent can be directly plugged into our environments, then will be trained and tested. Different agents can run on the same benchmark environment for fair comparisons. Several popular DRL libraries are supported, including ElegantRL, RLlib, and SB3.

 Data Layer

Data Layer

In the data layer, we use a unified data processor to access data, clean data, and extract features.

[image: ../_images/finrl-meta_data_layer.png]

Data Accessing

We connect data APIs of different platforms and unify them using a FinRL-Meta data processor. Users can access data from various sources given the start date, end date, stock list, time interval, and kwargs.

[image: ../_images/FinRL-Meta-Data-layer.png]

Data Cleaning

Raw data retrieved from different data sources are usually of various formats and have erroneous or NaN data (missing data) to different extents, making data cleaning highly time-consuming. In FinRL-Meta, we automate the data cleaning process.

The cleaning processes of NaN data are usually different for various time frequencies. For Low-frequency data, except few stocks with extremely low liquidity, the few NaN values usually mean suspension during that time interval. While for high-frequency data, NaN values are pervasive, which usually means no transaction during that time interval. To reduce the simulation-to-reality gap considering of data efficiency, we provide different solutions for these two cases.

In the low-frequency case, we directly delete the rows with NaN values, reflecting suspension in simulated trading environments. However, it is not suitable to directly delete rows with NaN values in high-frequency cases.

In our test of downloading 1-min OHLCV data of DJIA 30 companies from Alpaca during 2021–01–01~2021–05–31, there were 39736 rows for the raw data. However, after dropping rows with NaN values, only 3361 rows are left.

The low data efficiency of the dropping method is unacceptable. Instead, we take an improved forward filling method. We fill the open, high, low, close columns with the last valid value of close price and the volume column with 0, which is a standard method in practice.

Although this filling method sacrifices the authenticity of the simulated environments, it is acceptable compared to significantly improved data efficiency, especially under tickers with high liquidity. Moreover, this filling method can be further improved using bid, ask prices to reduce the simulation-to-reality gap.

Feature Engineering

Feature engineering is the last part of the data layer. We automate the calculation of technical indicators by connecting the Stockstats or TAlib library in our data processor. Common technical indicators including Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI), Average Directional Index (ADX), and Commodity Channel Index (CCI), and so on, are supported. Users can also quickly add indicators from other libraries, or add the user-defined features directly.

Users can add their features by two ways: 1) Write user-defined feature extraction functions directly. The returned features will be added to a feature array. 2) Store the features in a file, and move it to a specified folder. Then, these features will be obtained by reading from the specified file.

 Environment Layer

Environment Layer

FinRL-Meta follows the OpenAI gym-style to create market environments using the cleaned data from the data layer. It provides hundreds of environments with a common interface. Users can build their environments based on FinRL-Meta environments easily, share their results and compare the strategies’ performance. We will add more environments for convenience in the future.

Incorporating trading constraints to model market frictions

To better simulate real-world markets, we incorporate common market frictions (e.g., transaction costs and investor risk aversion) and portfolio restrictions (e.g., non-negative balance).

	Flexible account settings: Users can choose whether to allow buying on margin or short-selling.

	Transaction cost: We incorporate the transaction cost to reflect market friction, e.g., 0.1% of each buy or sell trade.

	Risk-control for market crash: In FinRL, a financial turbulence index is used to control risk during market crash situations. However, calculating the turbulence index is time-consuming. It may take minutes, which is not suitable for paper trading and live trading. We replace the financial turbulence index with the volatility index (VIX) that can be accessed immediately.

Multiprocessing training via vector environment

We utilize GPUs for multiprocessing training, namely, the vector environment technique of Isaac Gym, which significantly accelerates the training process. In each CUDA core, a trading agent interacts with a market environment to produce transitions in the form of {state, action, reward, next state}. Then, all the transitions are stored in a replay buffer to update a learner. By adopting this technique, we successfully achieve the multiprocessing simulation of hundreds of market environments to improve the performance of DRL trading agents on large datasets.

 Benchmark

Benchmark

Performance Metrics

FinRL-Meta provides the following unified metrics to measure the trading performance:

	Cumulative return: \(R = \frac{V - V_0}{V_0}\), where V is final portfolio value, and \(V_0\) is original capital.

	Annualized return: \(r = (1+R)^\frac{365}{t}-1\), where t is the number of trading days.

	Annualized volatility: \({\sigma}_a = \sqrt{\frac{\sum_{i=1}^{n}{(r_i-\bar{r})^2}}{n-1}}\), where \(r_i\) is the annualized return in year i, \(\bar{r}\) is the average annualized return, and n is the number of years.

	Sharpe ratio: \(S = \frac{r - r_f}{{\sigma}_a}\), where \(r_f\) is the risk-free rate.

	Max. drawdown The maximal percentage loss in portfolio value.

The following baseline trading strategies are provided for comparisons:

	Passive trading strategy, a well-known long-term strategy. The investors just buy and hold selected stocks or indexes without further activities.

	**Mean-variance and min-variance strategy, both strategies look for a balance between risks and profits. It selects a diversified portfolio to achieve higher profits at lower risk.

	Equally weighted strategy, a portfolio allocation strategy that gives equal weights to different assets, avoiding allocating overly high weights on particular stocks.

Tutorials in Jupyter Notebooks

For educational purposes, we provide Jupyter notebooks as tutorials to help newcomers get familiar with the whole pipeline. Notebooks can be found here [https://github.com/AI4Finance-Foundation/FinRL-Meta/tree/master/tutorials]

	Stock trading: We apply popular DRL algorithms to trade multiple stocks.

	Portfolio allocation: We use DRL agents to optimize asset allocation in a set of stocks.

	Cryptocurrency trading: We reproduce the experiment on 10 popular cryptocurrencies.

	Multi-agent RL for liquidation strategy analysis: We reproduce the experiment in [7]. The multi-agent optimizes the shortfalls in the liquidation task, which is to sell given shares of one stock sequentially within a given period, considering the costs arising from the market impact and the risk aversion.

	Ensemble strategy for stock trading: We reproduce the experiment in that employed an ensemble strategy of several DRL algorithms on the stock trading task.

	Paper trading demo: We provide a demo for paper trading. Users could combine their own strategies or trained agents in paper trading.

	China A-share demo: We provide a demo based on the China A-share market data.

	Hyperparameter tuning: We provide several demos for hyperparameter tuning using Optuna or Ray Tune, since hyperparameter tuning is critical for better performance.

 Tutorials Guide

Tutorials Guide

Welcome to FinRL’s tutorial! In this section, you can walk through the tutorial notebooks we prepared. If you are new to FinRL, we would suggest you the following sequence:

[image: ../_images/FinRL_Tutorials.png]
 [https://github.com/AI4Finance-Foundation/FinRL/tree/master/tutorials]Mission: provide user-friendly demos in notebook or python.

Outline

1-Introduction: basic demos for beginners.

2-Advance: advanced demos, e.g., ensemble stock trading.

3-Practical: paper trading and live trading.

4-Optimization: hyperparameter tuning.

5-Others: other demos.

	1-Introduction

	2-Advance

	3-Practical

	4-Optimization

	5-Others

 1-Introduction

1-Introduction

This section is recommend for new comers of FinRL. Users could better learn FinRL in the meantime of running these notebooks.

	Stock_NeurIPS2018.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/Stock_NeurIPS2018_SB3.ipynb],

This is the notebook we recommend new users run first. It goes through a full process of DRL for stock trading using FinRL.

	China_A_share_market_tushare.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/China_A_share_market_tushare.ipynb]

This notebook demonstrate using FinRL to connect Tushare, using its data of China A share market.

	FinRL_PortfolioAllocation_NeurIPS_2020.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/FinRL_PortfolioAllocation_NeurIPS_2020.ipynb]

This notebook demonstrate using FinRL to do portfolio allocation.

 2-Advance

2-Advance

This section is recommended for users with some familiarity of FinRL or FinRL-Meta (or already run the notebooks in “1-Introduction”).

Notebooks in this section includes:

	FinRL_Compare_ElegantRL_RLlib_Stablebaseline3.ipynb [https://github.com/AI4Finance-Foundation/FinRL/blob/master/tutorials/2-Advance/FinRL_Compare_ElegantRL_RLlib_Stablebaseline3.ipynb]

In this notebook, we compare the three DRL libraries that supported in FinRL. Users who know these DRL libraries might find this interesting.

	FinRL_Ensemble_StockTrading_ICAIF_2020.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/2-Advance/FinRL_Ensemble_StockTrading_ICAIF_2020.ipynb]

In this notebook, we implement an “ensemble agent”, which is a ensemble of several popular DRL algorithms. Then we compare the performance of the ensemble agent and other DRL agents on the portfolio allocation task.

FinRL_PortfolioAllocation_Explainable_DRL.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/2-Advance/FinRL_PortfolioAllocation_Explainable_DRL.ipynb].

 3-Practical

3-Practical

This section is recommended for users with some familiarity of FinRL or FinRL-Meta (or already run the notebooks in “1-Introduction”). User could use the provided code for specific task, or design their own task based on existing code.

Notebooks in this section includes:

FinRL_MultiCrypto_Trading.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/3-Practical/FinRL_MultiCrypto_Trading.ipynb],

In this notebook, we provide a demo of multiple cryptocurrency trading. It shows a whole process of how to use APIs in FinRL and FinRL-Meta to do cryptocurrency trading.

FinRL_PaperTrading_Demo.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/3-Practical/FinRL_PaperTrading_Demo.ipynb].

In this notebook, we provide a demo of paper trading. It shows a whole process of using FinRL and FinRL-Meta to connect to Alpaca to do paper trading. Note: User need to have their own Alpaca account to run this notebook.

 4-Optimization

4-Optimization

This section provideds examples of hyperperameter tuning and connecting cloud platform.

Notebooks in this section includes:

FinRL_HyperparameterTuning_Optuna.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_Optuna.ipynb],

FinRL_HyperparameterTuning_Raytune_RLlib.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_Raytune_RLlib.ipynb],

FinRL_HyperparameterTuning_using_Optuna_basic.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_using_Optuna_basic.ipynb],

FinRL_Weights_and_Biasify_StableBaselines3.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_Weights_and_Biasify_StableBaselines3.ipynb].

 5-Others

5-Others

This section collects uncategorized notebooks such as those made by community members or for some specific usage.

Notebooks in this section includes:

FinRL_demo_docker.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/FinRL_demo_docker.ipynb],

tutorial_env_multistock_cashpenalty.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_env_multistock_cashpenalty.ipynb],

tutorial_multistock_docker.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_multistock_docker.ipynb],

tutorial_multistock_variant_2.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_multistock_variant_2.ipynb],

tutorial_this_works_1_18.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_this_works_1_18.ipynb].

 1-Introduction

1-Introduction

This section is recommend for new comers of FinRL. Users could better learn FinRL in the meantime of running these notebooks.

	Stock_NeurIPS2018.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/Stock_NeurIPS2018_SB3.ipynb],

This is the notebook we recommend new users run first. It goes through a full process of DRL for stock trading using FinRL.

	China_A_share_market_tushare.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/China_A_share_market_tushare.ipynb]

This notebook demonstrate using FinRL to connect Tushare, using its data of China A share market.

	FinRL_PortfolioAllocation_NeurIPS_2020.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/FinRL_PortfolioAllocation_NeurIPS_2020.ipynb]

This notebook demonstrate using FinRL to do portfolio allocation.

 2-Advance

2-Advance

This section is recommended for users with some familiarity of FinRL or FinRL-Meta (or already run the notebooks in “1-Introduction”).

Notebooks in this section includes:

	FinRL_Compare_ElegantRL_RLlib_Stablebaseline3.ipynb [https://github.com/AI4Finance-Foundation/FinRL/blob/master/tutorials/2-Advance/FinRL_Compare_ElegantRL_RLlib_Stablebaseline3.ipynb]

In this notebook, we compare the three DRL libraries that supported in FinRL. Users who know these DRL libraries might find this interesting.

	FinRL_Ensemble_StockTrading_ICAIF_2020.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/2-Advance/FinRL_Ensemble_StockTrading_ICAIF_2020.ipynb]

In this notebook, we implement an “ensemble agent”, which is a ensemble of several popular DRL algorithms. Then we compare the performance of the ensemble agent and other DRL agents on the portfolio allocation task.

FinRL_PortfolioAllocation_Explainable_DRL.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/2-Advance/FinRL_PortfolioAllocation_Explainable_DRL.ipynb].

 3-Practical

3-Practical

This section is recommended for users with some familiarity of FinRL or FinRL-Meta (or already run the notebooks in “1-Introduction”). User could use the provided code for specific task, or design their own task based on existing code.

Notebooks in this section includes:

FinRL_MultiCrypto_Trading.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/3-Practical/FinRL_MultiCrypto_Trading.ipynb],

In this notebook, we provide a demo of multiple cryptocurrency trading. It shows a whole process of how to use APIs in FinRL and FinRL-Meta to do cryptocurrency trading.

FinRL_PaperTrading_Demo.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/3-Practical/FinRL_PaperTrading_Demo.ipynb].

In this notebook, we provide a demo of paper trading. It shows a whole process of using FinRL and FinRL-Meta to connect to Alpaca to do paper trading. Note: User need to have their own Alpaca account to run this notebook.

 4-Optimization

4-Optimization

This section provideds examples of hyperperameter tuning and connecting cloud platform.

Notebooks in this section includes:

FinRL_HyperparameterTuning_Optuna.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_Optuna.ipynb],

FinRL_HyperparameterTuning_Raytune_RLlib.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_Raytune_RLlib.ipynb],

FinRL_HyperparameterTuning_using_Optuna_basic.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_using_Optuna_basic.ipynb],

FinRL_Weights_and_Biasify_StableBaselines3.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_Weights_and_Biasify_StableBaselines3.ipynb].

 5-Others

5-Others

This section collects uncategorized notebooks such as those made by community members or for some specific usage.

Notebooks in this section includes:

FinRL_demo_docker.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/FinRL_demo_docker.ipynb],

tutorial_env_multistock_cashpenalty.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_env_multistock_cashpenalty.ipynb],

tutorial_multistock_docker.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_multistock_docker.ipynb],

tutorial_multistock_variant_2.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_multistock_variant_2.ipynb],

tutorial_this_works_1_18.ipynb [https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_this_works_1_18.ipynb].

 File Architecture

File Architecture

FinRL’s file architecture strictly follow the Three-layer Architecture.

FinRL
├── finrl (the main folder)
│ ├── applications
│ ├── cryptocurrency_trading
│ ├── high_frequency_trading
│ ├── portfolio_allocation
│ └── stock_trading
│ ├── agents
│ ├── elegantrl
│ ├── rllib
│ └── stablebaseline3
│ ├── meta
│ ├── data_processors
│ ├── env_cryptocurrency_trading
│ ├── env_portfolio_allocation
│ ├── env_stock_trading
│ ├── preprocessor
│ ├── data_processor.py
│ └── finrl_meta_config.py
│ ├── config.py
│ ├── config_tickers.py
│ ├── main.py
│ ├── train.py
│ ├── test.py
│ ├── trade.py
└───└── plot.py

 Development Guide

Development Guide

Git is a commonly used tool in software engineering. PyCharm is a popular IDE for Python, and developers can also choose other IDEs as they like. Now, we take PyCharm as an example. This setup with PyCharm makes it easy to work on all of AI4Finance-Foundation’s repositories simultaneously, while allowing easy debugging, committing to the respective repo and creating PRs/MRs.

Step 1: Download Software

-Download and install Anaconda [https://www.anaconda.com/].

-Download and install PyCharm [https://www.jetbrains.com/pycharm/]. The Community Edition (free version) offers everything you need except running Jupyter notebooks. The Full-fledged Professional Edition offers everything. A workaround to run existing notebooks in the Community edition is to copy all notebook cells into .py files.
For notebook support, you can consider PyCharm Professional Edition.

-On GitHub, fork FinRL [https://github.com/AI4Finance-Foundation/FinRL] to your private Github repo.

-On GitHub, fork ElegantRL [https://github.com/AI4Finance-Foundation/ElegantRL] to your private Github repo.

-On GitHub, fork FinRL-Meta [https://github.com/AI4Finance-Foundation/FinRL-Meta] to your private Github repo.

-All next steps happen on your local computer.

Step 2: Git Clone

mkdir ~/ai4finance
cd ~/ai4finance
git clone https://github.com/[your_github_username]/FinRL.git
git clone https://github.com/[your_github_username]/ElegantRL.git
git clone https://github.com/[your_github_username]/FinRL-Meta.git

Step 3: Create a Conda Environment

cd ~/ai4finance
conda create --name ai4finance python=3.8
conda activate ai4finance

cd FinRL
pip install -r requirements.txt

Install ElegantRL using requirements.txt, or open ElegantRL/setup.py in a text editor and pip install anything you can find: gym, matplotlib, numpy, pybullet, torch, opencv-python, and box2d-py.

Step 4: Configure a PyCharm Project

-Launch PyCharm

-File > Open > [ai4finance project folder]

[image: ../_images/pycharm_status_bar.png]
-At the bottom right of the status bar, change or add the interpreter to the ai4finance conda environment. Make sure when you click the “terminal” bar at the bottom left, it shows ai4finance.

[image: ../_images/pycharm_MarkDirectoryAsSourcesRoot.png]
-At the left of the screen, in the project file tree:

	Right-click on the FinRL folder > Mark Directory as > Sources Root

	Right-click on the ElegantRL folder > Mark Directory as > Sources Root

	Right-click on the FinRL-Meta folder > Mark Directory as > Sources Root

-Once you run a .py file, you will notice that you may still have some missing packages. In that case, simply pip install them.

For example, we revise FinRL.

cd ~/ai4finance
cd ./FinRL
git checkout -b branch_xxx

where branch_xxx is a new branch name. In this branch, we revise config.py.

Step 5: New a Branch

Please new a new branch based on branch “staging” (NOT “master”), which is for all developers. DO NOT directly push codes to the branch “staging” or “master”.

Step 6: Creating Commits and PRs/MRs

-Create commits as you usually do through PyCharm.

-Make sure that each commit covers only 1 of the 3 repo’s. Don’t create a commit that spans more than one repo, e.g., FinRL and ElegantRL.

[image: ../_images/pycharm_push_PR.png]
-When you do a Git Push, PyCharm will ask you to which of the 3 repos you want to push. Just like the above figure, we select the repo “FinRL”.

With respect to creating a pull request (PR) or merge quest (MR), please refer to Create a PR [https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request] or Opensource Create a PR [https://opensource.com/article/19/7/create-pull-request-github].

Step 7: Submit PRs/MRs

When submiting PRs/MRs, please choose the branch “staging”, NOT “master”.

Step 8: Merge “staging” to “master”

This step is for managers. If the branch “staging” is stable and works successfully after a series of tests, the managers of this repo will merge it to the branch “master” every 2-4 weeks. To avoid any risk, we hope managers download the “master” branch locally before merging.

 Contributing Guidelines

Contributing Guidelines

This project aims to bring a reinforcement learning environment to the trading community.
There are always competing priorities among the community, and we want to make sure that we are able to achieve together a project that is reliable, sustainable, and maintainable.

Guiding Principles

	
	We should have reliable codes in this project
	
	reliable code with tests

	reliable code that works

	reliable code runs without consuming excessive resources

	We should help each other to achieve SOTA results together

	
	We should write clear codes
	
	Code should not be redundant

	Code should have documentation inline (standard pep format)

	Code should be organized into classes and functions

	We should leverage outside tools as it makes sense

	We work together, and are kind, patient, and clear in our communication. Jerks are not welcome.

If you see something, say something!
* Filing an [issue](https://guides.github.com/features/issues/) is a great way to help improve the project

Accepting PRs

	You found a bug and a way to fix it

	You have contributed to an issue that was prioritized by the coordinators of this project

	You have new functionality that you’re adding that you’ve written issues for and has documentation + Tests

PR Guidelines

	Please tag @bruceyang, @spencerromo, or @xiaoyang in every PR. (P.S. we’re looking for more collaborators with software experience!)

	Please reference or write and reference an [issue](https://guides.github.com/features/issues/)

	Please have clear commit messages

	Please write detailed documentation and tests for every added piece of functionality

	Please try to not break existing functionality, or if you need to, please plan to justify this necessity and coordinate with the collaborators

	Please be patient and respectful with feedback

	Please use pre-commit hooks

Others

-Using pre-commit
`
pip install pre-commit
pre-commit install
`

-Running Tests
```
-Locally
python3 -m unittest discover

-Docker
./docker/bin/build_container.sh
./docker/bin/test.sh
```


 Publications

Publications

Papers by the Columbia research team can be found at Google Scholar [https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=XsdPXocAAAAJ].

Publications

	Title

	Conference

	Link

	Citations

	Year

	FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance

	NeurIPS 2021 Data-Centric AI Workshop

	paper [https://arxiv.org/abs/2112.06753], code [https://github.com/AI4Finance-Foundation/FinRL-Meta]

	2

	2021

	Explainable deep reinforcement learning for portfolio management: An empirical approach

	ICAIF 2021: ACM International Conference on AI in Finance

	paper [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3958005], code [https://github.com/AI4Finance-Foundation/FinRL]

	1

	2021

	FinRL-Podracer: High performance and scalable deep reinforcement learning for quantitative finance

	ICAIF 2021: ACM International Conference on AI in Finance

	paper [https://arxiv.org/abs/2111.05188], code [https://github.com/AI4Finance-Foundation/FinRL_Podracer]

	2

	2021

	FinRL: Deep reinforcement learning framework to automate trading in quantitative finance

	ICAIF 2021: ACM International Conference on AI in Finance

	paper [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3955949], code [https://github.com/AI4Finance-Foundation/FinRL]

	7

	2021

	FinRL: A deep reinforcement learning library for automated stock trading in quantitative finance

	NeurIPS 2020 Deep RL Workshop

	paper [https://arxiv.org/abs/2011.09607], code [https://github.com/AI4Finance-Foundation/FinRL]

	25

	2020

	Deep reinforcement learning for automated stock trading: An ensemble strategy

	ICAIF 2020: ACM International Conference on AI in Finance

	paper [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3690996], code [https://github.com/AI4Finance-Foundation/Deep-Reinforcement-Learning-for-Automated-Stock-Trading-Ensemble-Strategy-ICAIF-2020]

	44

	2020

	Multi-agent reinforcement learning for liquidation strategy analysis

	ICML 2019 Workshop on AI in Finance: Applications and Infrastructure for Multi-Agent Learning

	paper [https://arxiv.org/abs/1906.11046], code [https://github.com/AI4Finance-Foundation/Liquidation-Analysis-using-Multi-Agent-Reinforcement-Learning-ICML-2019]

	19

	2019

	Practical deep reinforcement learning approach for stock trading

	NeurIPS 2018 Workshop on Challenges and Opportunities for AI in Financial Services

	paper [https://arxiv.org/abs/1811.07522], code [https://github.com/AI4Finance-Foundation/DQN-DDPG_Stock_Trading]

	86

	2018

 External Sources

External Sources

The following contents are collected and referred by AI4Finance community during the development of FinRL and related projects. Some of them are educational and relatively easy while some others are professional and need advanced knowledge. We appreciate and respect the effort of all these contents’ authors and developers.

Proof-of-concept

[1] FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3955949] Deep reinforcement learning framework to automate trading in quantitative finance, ACM International Conference on AI in Finance, ICAIF 2021.

[2] FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance [https://arxiv.org/abs/2011.09607] A deep reinforcement learning library for automated stock trading in quantitative finance, Deep RL Workshop, NeurIPS 2020.

[3] Practical deep reinforcement learning approach for stock trading [https://arxiv.org/abs/1811.07522]. NeurIPS Workshop on Challenges and Opportunities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy, 2018.

[4] Deep Reinforcement Learning for Trading [https://arxiv.org/abs/1911.10107]. Zhang, Zihao, Stefan Zohren, and Stephen Roberts. The Journal of Financial Data Science 2, no. 2 (2020): 25-40.

[5] A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem [https://arxiv.org/abs/1706.10059]. Jiang, Zhengyao, Dixing Xu, and Jinjun Liang. arXiv preprint arXiv:1706.10059 (2017).

DRL Algorithms/Libraries

[1] Documentation of ElegentRL [https://elegantrl.readthedocs.io] by AI4Finance Foundation.

[2] Spinning Up in Deep RL [https://spinningup.openai.com/] by OpenAI.

Theory

[1] Deep Reinforcement Learning: An Overview [https://arxiv.org/abs/1701.07274] Li, Yuxi. arXiv preprint arXiv:1701.07274 (2017).

[2] Continuous‐time mean–variance portfolio selection: A reinforcement learning framework. Mathematical Finance, 30(4), pp.1273-1308. Wang, H. and Zhou, X.Y., 2020.

[3] Mao Guan and Xiao-Yang Liu. Explainable deep reinforcement learning for portfolio man- agement: An empirical approach. ACM International Conference on AI in Finance, ICAIF 2021.

[4] ICAIF [https://ai-finance.org] International Conference on AI in Finance.

Trading Strategies

[1] Deep reinforcement learning for automated stock trading: an ensemble strategy [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3690996]. ACM International Conference on AI in Finance, 2020.

[2] FinRL-Podracer [https://arxiv.org/abs/2111.05188]: High performance and scalable deep reinforcement learning for quantitative finance. ACM International Conference on AI in Finance, ICAIF 2021.

[3] Multi-agent reinforcement learning for liquidation strategy analysis, paper [https://arxiv.org/abs/1906.11046] and codes [https://github.com/WenhangBao/Multi-Agent-RL-for-Liquidation]. Workshop on Applications and Infrastructure for Multi-Agent Learning, ICML 2019.

[4] Risk-Sensitive Reinforcement Learning: a Martingale Approach to Reward Uncertainty. [https://arxiv.org/abs/2006.12686] International Conference on AI in Finance, ICAIF 2020.

[5] Cryptocurrency Trading Using Machine Learning [https://www.mdpi.com/1911-8074/13/8/178]. Journal of Risk and Financial Management, August 2020.

[6] Multi-Agent Reinforcement Learning in a Realistic Limit Order Book Market Simulation [https://arxiv.org/abs/2006.05574]. Michaël Karpe, Jin Fang, Zhongyao Ma, Chen Wang. International Conference on AI in Finance (ICAIF’20), September 2020.

[7] Market Making via Reinforcement Learning [https://arxiv.org/abs/1804.04216]. Thomas Spooner, John Fearnley, Rahul Savani, Andreas Koukorinis. AAMAS2018 Conference Proceedings

[8] Financial Trading as a Game: A Deep Reinforcement Learning Approach [https://arxiv.org/abs/1807.02787] Huang, Chien Yi. arXiv preprint arXiv:1807.02787 (2018).

[9] Deep Hedging: Hedging Derivatives Under Generic Market Frictions Using Reinforcement Learning [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3355706] Buehler, Hans, Lukas Gonon, Josef Teichmann, Ben Wood, Baranidharan Mohan, and Jonathan Kochems. Swiss Finance Institute Research Paper 19-80 (2019).

Financial Big Data

[1] FinRL-Meta [https://arxiv.org/abs/2112.06753]: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance. NeurIPS 2021 Data-Centric AI Workshop

Interpretation and Explainability

[1] Explainable Deep Reinforcement Learning for Portfolio Management: An Empirical Approach [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3958005%3B]. Guan, M. and Liu, X.Y.. ACM International Conference on AI in Finance, 2021.

Tools or Softwares

[1] FinRL [https://github.com/AI4Finance-Foundation/FinRL] by AI4Finance Foundation.

[2] FinRL-Meta [https://github.com/AI4Finance-Foundation/FinRL-Meta]: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in Quantitative Finance, by AI4Finance Foundation.

[3] ElegantRL [https://github.com/AI4Finance-Foundation/ElegantRL]: a DRL library developed by AI4Finance Foundation.

[4] Stable-Baselines3 [https://github.com/DLR-RM/stable-baselines3]: Reliable Reinforcement Learning Implementations.

Survey

[1] Recent Advances in Reinforcement Learning in Finance [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3971071]. Hambly, B., Xu, R. and Yang, H., 2021.

[2] Deep Reinforcement Learning for Trading—A Critical Survey [https://www.mdpi.com/2306-5729/6/11/119]. Adrian Millea, 2021.

[3] Modern Perspectives on Reinforcement Learning in Finance [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3449401] Kolm, Petter N. and Ritter, Gordon. The Journal of Machine Learning in Finance, Vol. 1, No. 1, 2020.

[4] Reinforcement Learning in Economics and Finance [https://arxiv.org/abs/2003.10014] Charpentier, Arthur, Romuald Elie, and Carl Remlinger. Computational Economics (2021): 1-38.

[5] Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics [https://www.mdpi.com/2227-7390/8/10/1640] Mosavi, Amirhosein, Yaser Faghan, Pedram Ghamisi, Puhong Duan, Sina Faizollahzadeh Ardabili, Ely Salwana, and Shahab S. Band. Mathematics 8, no. 10 (2020): 1640.

Education

[1] Coursera Overview of Advanced Methods of Reinforcement Learning in Finance [https://www.coursera.org/learn/advanced-methods-reinforcement-learning-finance]. By Igor Halperin, at NYU.

[2] Foundations of reinforcement learning with applications in finance [https://stanford.edu/~ashlearn/RLForFinanceBook/book.pdf] by Ashwin Rao, Tikhon Jelvis, Stanford University

 FAQ

FAQ

	Version:

	0.3

	Date:

	05-29-2022

	Contributors:

	Roberto Fray da Silva, Xiao-Yang Liu, Ziyi Xia, Ming Zhu

This document contains the most frequently asked questions related to FinRL, which are based on questions posted on the slack channels and Github [https://github.com/AI4Finance-Foundation/FinRL] issues.

Outline

	1-Inputs and datasets

	2-Code and implementation

	3-Model evaluation

	4-Miscellaneous

	5-Common issues/bugs

1-Inputs and datasets

	Can I use FinRL for crypto?

Not yet. We’re developing this functionality

	Can I use FinRL for live trading?

Not yet. We’re developing this functionality

	Can I use FinRL for forex?

Not yet. We’re developing this functionality

	Can I use FinRL for futures?

Not yet

	What is the best data source for free daily data?

Yahoo Finance (through the yfinance library)

	What is the best data source for minute data?

Yahoo Finance (only up to last 7 days), through the yfinance library. It is the only option besides scraping (or paying for a service provider)

	Does FinRL support trading with leverage?

No, as this is more of an execution strategy related to risk control. You can use it as part of your system, adding the risk control part as a separate component

	Can a sentiment feature be added to improve the model's performance?

Yes, you can add it. Remember to check on the code that this additional feature is being fed to the model (state)

	Is there a good free source for market sentiment to use as a feature?

No, you’ll have to use a paid service or library/code to scrape news and obtain the sentiment from them (normally, using deep learning and NLP)

2-Code and implementation

	Does FinRL supports GPU training?

Yes, it does

	The code works for daily data but gives bad results on intraday frequency.

Yes, because the current parameters are defined for daily data. You’ll have to tune the model for intraday trading

	Are there different reward functions available?

Not many yet, but we’re working on providing different reward functions and an easy way to set your own reward function

	Can I use a pre-trained model?

Yes, but none is available at the moment. Sometimes in the literature you’ll find this referred to as transfer learning

	What is the most important hyperparameter to tune on the models?

Each model has its own hyperparameters, but the most important is the total_timesteps (think of it as epochs in a neural network: even if all the other hyperparameters are optimal, with few epochs the model will have a bad performance). The other important hyperparameters, in general, are: learning_rate, batch_size, ent_coef, buffer_size, policy, and reward scaling

	What are some libraries I could use to better tune the models?

There are several, such as: Ray Tune and Optuna. You can start from our examples in the tutorials

	What DRL algorithms can I use with FinRL?

We suggest using ElegantRL or Stable Baselines 3. We tested the following models with success: A2C, A3C, DDPG, PPO, SAC, TD3, TRPO. You can also create your own algorithm, with an OpenAI Gym-style market environment

	The model is presenting strange results OR is not training.

Please update to latest version (https://github.com/AI4Finance-LLC/FinRL-Library), check if the hyperparameters used were not outside a normal range (ex: learning rate too high), and run the code again. If you still have problems, please check Section 2 (What to do when you experience problems)

	
	raw-html:

	What to do when you experience problems?

1. Check if it is not already answered on this FAQ 2. Check if it is posted on the GitHub repo issues [https://github.com/AI4Finance-LLC/FinRL-Library/issues]. If not, welcome to submit an issue on GitHub 3. Use the correct channel on the AI4Finance slack or Wechat group.*

	
	raw-html:

	Does anyone know if there is a trading environment for a single stock? There is one in the docs, but the collab link seems to be broken.

We did not update the single stock for long time. The performance for single stock is not very good, since the state space is too small so that the agent extract little information from the environment. Please use the multi stock environment, and after training only use the single stock to trade.

3-Model evaluation

	The model did not beat buy and hold (BH) with my data. Is the model or code wrong?

Not exactly. Depending on the period, the asset, the model chosen, and the hyperparameters used, BH may be very difficult to beat (it’s almost never beaten on stocks/periods with low volatility and steady growth). Nevertheless, update the library and its dependencies (the github repo has the most recent version), and check the example notebook for the specific environment type (single, multi, portfolio optimization) to see if the code is running correctly

	How does backtesting works in the library?

We use the Pyfolio backtest library from Quantopian (https://github.com/quantopian/pyfolio), especially the simple tear sheet and its charts. In general, the most important metrics are: annual returns, cumulative returns, annual volatility, sharpe ratio, calmar ratio, stability, and max drawdown

	Which metrics should I use for evaluting the model?

There are several metrics, but we recommend the following, as they are the most used in the market: annual returns, cumulative returns, annual volatility, sharpe ratio, calmar ratio, stability, and max drawdown

	Which models should I use as a baseline for comparison?

We recommend using buy and hold (BH), as it is a strategy that can be followed on any market and tends to provide good results in the long run. You can also compare with other DRL models and trading strategies such as the minimum variance portfolio

4-Miscellaneous

	I'm interested, but I know nothing. How should I start?

1. Read the documentation from the very beginning 2. Go through * `tutorials <https://github.com/AI4Finance-Foundation/FinRL/tree/master/tutorials>`_ *3. read our papers

	What is the development roadmap for the library?

This is available on our Github repo https://github.com/AI4Finance-LLC/FinRL-Library

	How can I contribute to the development?

Participate on the slack channels, check the current issues and the roadmap, and help any way you can (sharing the library with others, testing the library of different markets/models/strategies, contributing with code development, etc)

	What are some good references before I start using the library?

Please read 1-Inputs and datasets

	What are some good RL references for people from finance? What are some good finance references for people from ML?

Please read 4-Miscellaneous

	What new SOTA models will be incorporated on FinRL?

Please check our development roadmap at our Github repo: https://github.com/AI4Finance-LLC/FinRL-Library

	What's the main difference between FinRL and FinRL-Meta?

FinRL aims for education and demonstration, while FinRL-Meta aims for building financial big data and a metaverse of data-driven financial RL.

5-Common issues/bugs

	
	Package trading_calendars reports errors in Windows system:
	Trading_calendars is not maintained now. It may report errors in Windows system (python>=3.7). These are two possible solutions: 1). Use python=3.6 environment. 2). Replace trading_calendars with exchange_caldenars.

 Index

Index

 Multiple Stock Trading

Multiple Stock Trading

Deep Reinforcement Learning for Stock Trading from Scratch: Multiple Stock Trading

Tip

Run the code step by step at Google Colab [https://colab.research.google.com/github/AI4Finance-Foundation/FinRL/blob/master/FinRL_StockTrading_NeurIPS_2018.ipynb].

Step 1: Preparation

Step 1.1: Overview

To begin with, I would like explain the logic of multiple stock trading using Deep Reinforcement Learning.

We use Dow 30 constituents as an example throughout this article, because those are the most popular stocks.

A lot of people are terrified by the word “Deep Reinforcement Learning”, actually, you can just treat it as a “Smart AI” or “Smart Stock Trader” or “R2-D2 Trader” if you want, and just use it.

Suppose that we have a well trained DRL agent “DRL Trader”, we want to use it to trade multiple stocks in our portfolio.

	Assume we are at time t, at the end of day at time t, we will know the open-high-low-close price of the Dow 30 constituents stocks. We can use these information to calculate technical indicators such as MACD, RSI, CCI, ADX. In Reinforcement Learning we call these data or features as “states”.

	We know that our portfolio value V(t) = balance (t) + dollar amount of the stocks (t).

	We feed the states into our well trained DRL Trader, the trader will output a list of actions, the action for each stock is a value within [-1, 1], we can treat this value as the trading signal, 1 means a strong buy signal, -1 means a strong sell signal.

	We calculate k = actions *h_max, h_max is a predefined parameter that sets as the maximum amount of shares to trade. So we will have a list of shares to trade.

	The dollar amount of shares = shares to trade* close price (t).

	Update balance and shares. These dollar amount of shares are the money we need to trade at time t. The updated balance = balance (t) −amount of money we pay to buy shares +amount of money we receive to sell shares. The updated shares = shares held (t) −shares to sell +shares to buy.

	So we take actions to trade based on the advice of our DRL Trader at the end of day at time t (time t’s close price equals time t+1’s open price). We hope that we will benefit from these actions by the end of day at time t+1.

	Take a step to time t+1, at the end of day, we will know the close price at t+1, the dollar amount of the stocks (t+1)= sum(updated shares * close price (t+1)). The portfolio value V(t+1)=balance (t+1) + dollar amount of the stocks (t+1).

	So the step reward by taking the actions from DRL Trader at time t to t+1 is r = v(t+1) − v(t). The reward can be positive or negative in the training stage. But of course, we need a positive reward in trading to say that our DRL Trader is effective.

	Repeat this process until termination.

Below are the logic chart of multiple stock trading and a made-up example for demonstration purpose:

[image: ../../_images/multiple_1.jpeg]
[image: image/multiple_2.png]
Multiple stock trading is different from single stock trading because as the number of stocks increase, the dimension of the data will increase, the state and action space in reinforcement learning will grow exponentially. So stability and reproducibility are very essential here.

We introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop their own stock trading strategies.

FinRL is characterized by its reproducibility, scalability, simplicity, applicability and extendibility.

This article is focusing on one of the use cases in our paper: Mutiple Stock Trading. We use one Jupyter notebook to include all the necessary steps.

[image: ../../_images/FinRL-Architecture.png]
Step 1.2: Problem Definition：

This problem is to design an automated solution for stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.
The algorithm is trained using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment are:

	Action: The action space describes the allowed actions that the agent interacts with the environment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 represent selling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We use an action space {−k, …, −1, 0, 1, …, k}, where k denotes the number of shares. For example, “Buy 10 shares of AAPL” or “Sell 10 shares of AAPL” are 10 or −10, respectively

	Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s’, i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfolio values at state s′ and s, respectively

	State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, so our trading agent observes many different features to better learn in an interactive environment.

	Environment: Dow 30 constituents

The data of the stocks for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume.

Step 1.3: FinRL installation：

1## install finrl library
2!pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git

Then we import the packages needed for this demonstration.

Step 1.4: Import packages：

 1import pandas as pd
 2import numpy as np
 3import matplotlib
 4import matplotlib.pyplot as plt
 5# matplotlib.use('Agg')
 6import datetime
 7
 8%matplotlib inline
 9from finrl import config
10from finrl import config_tickers
11from finrl.meta.preprocessor.yahoodownloader import YahooDownloader
12from finrl.meta.preprocessor.preprocessors import FeatureEngineer, data_split
13from finrl.meta.env_stock_trading.env_stocktrading import StockTradingEnv
14from finrl.agents.stablebaselines3.models import DRLAgent
15
16from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline
17from pprint import pprint
18
19import sys
20sys.path.append("../FinRL-Library")
21
22import itertools

Finally, create folders for storage.

Step 1.5: Create folders：

1import os
2if not os.path.exists("./" + config.DATA_SAVE_DIR):
3 os.makedirs("./" + config.DATA_SAVE_DIR)
4if not os.path.exists("./" + config.TRAINED_MODEL_DIR):
5 os.makedirs("./" + config.TRAINED_MODEL_DIR)
6if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR):
7 os.makedirs("./" + config.TENSORBOARD_LOG_DIR)
8if not os.path.exists("./" + config.RESULTS_DIR):
9 os.makedirs("./" + config.RESULTS_DIR)

Then all the preparation work are done. We can start now!

Step 2: Download Data

Before training our DRL agent, we need to get the historical data of DOW30 stocks first. Here we use the data from Yahoo! Finance.
Yahoo! Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free. yfinance is an open-source library that provides APIs to download data from Yahoo! Finance. We will use this package to download data here.

FinRL uses a YahooDownloader [https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/marketdata/yahoodownloader.py] class to extract data.

class YahooDownloader:
 """
 Provides methods for retrieving daily stock data from Yahoo Finance API

 Attributes

 start_date : str
 start date of the data (modified from config.py)
 end_date : str
 end date of the data (modified from config.py)
 ticker_list : list
 a list of stock tickers (modified from config.py)

 Methods

 fetch_data()
 Fetches data from yahoo API
 """

Download and save the data in a pandas DataFrame:

1 # Download and save the data in a pandas DataFrame:
2 df = YahooDownloader(start_date = '2009-01-01',
3 end_date = '2020-09-30',
4 ticker_list = config_tickers.DOW_30_TICKER).fetch_data()
5
6 print(df.sort_values(['date','tic'],ignore_index=True).head(30))

[image: image/multiple_3.png]

Step 3: Preprocess Data

Data preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.

Step 3.1: Check missing data

1# check missing data
2dow_30.isnull().values.any()

Step 3.2: Add technical indicators

In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators: MACD and RSI.

 1def add_technical_indicator(df):
 2 """
 3 calcualte technical indicators
 4 use stockstats package to add technical inidactors
 5 :param data: (df) pandas dataframe
 6 :return: (df) pandas dataframe
 7 """
 8 stock = Sdf.retype(df.copy())
 9 stock['close'] = stock['adjcp']
10 unique_ticker = stock.tic.unique()
11
12 macd = pd.DataFrame()
13 rsi = pd.DataFrame()
14
15 #temp = stock[stock.tic == unique_ticker[0]]['macd']
16 for i in range(len(unique_ticker)):
17 ## macd
18 temp_macd = stock[stock.tic == unique_ticker[i]]['macd']
19 temp_macd = pd.DataFrame(temp_macd)
20 macd = macd.append(temp_macd, ignore_index=True)
21 ## rsi
22 temp_rsi = stock[stock.tic == unique_ticker[i]]['rsi_30']
23 temp_rsi = pd.DataFrame(temp_rsi)
24 rsi = rsi.append(temp_rsi, ignore_index=True)
25
26 df['macd'] = macd
27 df['rsi'] = rsi
28 return df

Step 3.3: Add turbulence index

Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one’s trading strategy when facing different market volatility level.

To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbulence index that measures extreme asset price fluctuation.

 1def add_turbulence(df):
 2 """
 3 add turbulence index from a precalcualted dataframe
 4 :param data: (df) pandas dataframe
 5 :return: (df) pandas dataframe
 6 """
 7 turbulence_index = calcualte_turbulence(df)
 8 df = df.merge(turbulence_index, on='datadate')
 9 df = df.sort_values(['datadate','tic']).reset_index(drop=True)
10 return df
11
12
13
14def calcualte_turbulence(df):
15 """calculate turbulence index based on dow 30"""
16 # can add other market assets
17
18 df_price_pivot=df.pivot(index='datadate', columns='tic', values='adjcp')
19 unique_date = df.datadate.unique()
20 # start after a year
21 start = 252
22 turbulence_index = [0]*start
23 #turbulence_index = [0]
24 count=0
25 for i in range(start,len(unique_date)):
26 current_price = df_price_pivot[df_price_pivot.index == unique_date[i]]
27 hist_price = df_price_pivot[[n in unique_date[0:i] for n in df_price_pivot.index]]
28 cov_temp = hist_price.cov()
29 current_temp=(current_price - np.mean(hist_price,axis=0))
30 temp = current_temp.values.dot(np.linalg.inv(cov_temp)).dot(current_temp.values.T)
31 if temp>0:
32 count+=1
33 if count>2:
34 turbulence_temp = temp[0][0]
35 else:
36 #avoid large outlier because of the calculation just begins
37 turbulence_temp=0
38 else:
39 turbulence_temp=0
40 turbulence_index.append(turbulence_temp)
41
42
43 turbulence_index = pd.DataFrame({'datadate':df_price_pivot.index,
44 'turbulence':turbulence_index})
45 return turbulence_index

Step 3.4 Feature Engineering

FinRL uses a FeatureEngineer [https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/preprocessing/preprocessors.py] class to preprocess data.

Perform Feature Engineering:

1 # Perform Feature Engineering:
2 df = FeatureEngineer(df.copy(),
3 use_technical_indicator=True,
4 tech_indicator_list = config.INDICATORS,
5 use_turbulence=True,
6 user_defined_feature = False).preprocess_data()

[image: image/multiple_4.png]

Step 4: Design Environment

Considering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a Markov Decision Process (MDP) problem. The training process involves observing stock price change, taking an action and reward’s calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.

Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.

The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, “Buy 10 shares of AAPL” or “Sell 10 shares of AAPL” are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric.

Step 4.1: Environment for Training

 1## Environment for Training
 2import numpy as np
 3import pandas as pd
 4from gym.utils import seeding
 5import gym
 6from gym import spaces
 7import matplotlib
 8matplotlib.use('Agg')
 9import matplotlib.pyplot as plt
 10
 11# shares normalization factor
 12# 100 shares per trade
 13HMAX_NORMALIZE = 100
 14# initial amount of money we have in our account
 15INITIAL_ACCOUNT_BALANCE=1000000
 16# total number of stocks in our portfolio
 17STOCK_DIM = 30
 18# transaction fee: 1/1000 reasonable percentage
 19TRANSACTION_FEE_PERCENT = 0.001
 20
 21REWARD_SCALING = 1e-4
 22
 23
 24class StockEnvTrain(gym.Env):
 25 """A stock trading environment for OpenAI gym"""
 26 metadata = {'render.modes': ['human']}
 27
 28 def __init__(self, df,day = 0):
 29 #super(StockEnv, self).__init__()
 30 self.day = day
 31 self.df = df
 32
 33 # action_space normalization and shape is STOCK_DIM
 34 self.action_space = spaces.Box(low = -1, high = 1,shape = (STOCK_DIM,))
 35 # Shape = 181: [Current Balance]+[prices 1-30]+[owned shares 1-30]
 36 # +[macd 1-30]+ [rsi 1-30] + [cci 1-30] + [adx 1-30]
 37 self.observation_space = spaces.Box(low=0, high=np.inf, shape = (121,))
 38 # load data from a pandas dataframe
 39 self.data = self.df.loc[self.day,:]
 40 self.terminal = False
 41 # initalize state
 42 self.state = [INITIAL_ACCOUNT_BALANCE] + \
 43 self.data.adjcp.values.tolist() + \
 44 [0]*STOCK_DIM + \
 45 self.data.macd.values.tolist() + \
 46 self.data.rsi.values.tolist()
 47 #self.data.cci.values.tolist() + \
 48 #self.data.adx.values.tolist()
 49 # initialize reward
 50 self.reward = 0
 51 self.cost = 0
 52 # memorize all the total balance change
 53 self.asset_memory = [INITIAL_ACCOUNT_BALANCE]
 54 self.rewards_memory = []
 55 self.trades = 0
 56 self._seed()
 57
 58 def _sell_stock(self, index, action):
 59 # perform sell action based on the sign of the action
 60 if self.state[index+STOCK_DIM+1] > 0:
 61 #update balance
 62 self.state[0] += \
 63 self.state[index+1]*min(abs(action),self.state[index+STOCK_DIM+1]) * \
 64 (1- TRANSACTION_FEE_PERCENT)
 65
 66 self.state[index+STOCK_DIM+1] -= min(abs(action), self.state[index+STOCK_DIM+1])
 67 self.cost +=self.state[index+1]*min(abs(action),self.state[index+STOCK_DIM+1]) * \
 68 TRANSACTION_FEE_PERCENT
 69 self.trades+=1
 70 else:
 71 pass
 72
 73 def _buy_stock(self, index, action):
 74 # perform buy action based on the sign of the action
 75 available_amount = self.state[0] // self.state[index+1]
 76 # print('available_amount:{}'.format(available_amount))
 77
 78 #update balance
 79 self.state[0] -= self.state[index+1]*min(available_amount, action)* \
 80 (1+ TRANSACTION_FEE_PERCENT)
 81
 82 self.state[index+STOCK_DIM+1] += min(available_amount, action)
 83
 84 self.cost+=self.state[index+1]*min(available_amount, action)* \
 85 TRANSACTION_FEE_PERCENT
 86 self.trades+=1
 87
 88 def step(self, actions):
 89 # print(self.day)
 90 self.terminal = self.day >= len(self.df.index.unique())-1
 91 # print(actions)
 92
 93 if self.terminal:
 94 plt.plot(self.asset_memory,'r')
 95 plt.savefig('account_value_train.png')
 96 plt.close()
 97 end_total_asset = self.state[0]+ \
 98 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):(STOCK_DIM*2+1)]))
 99 print("previous_total_asset:{}".format(self.asset_memory[0]))
100
101 print("end_total_asset:{}".format(end_total_asset))
102 df_total_value = pd.DataFrame(self.asset_memory)
103 df_total_value.to_csv('account_value_train.csv')
104 print("total_reward:{}".format(self.state[0]+sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):61]))- INITIAL_ACCOUNT_BALANCE))
105 print("total_cost: ", self.cost)
106 print("total_trades: ", self.trades)
107 df_total_value.columns = ['account_value']
108 df_total_value['daily_return']=df_total_value.pct_change(1)
109 sharpe = (252**0.5)*df_total_value['daily_return'].mean()/ \
110 df_total_value['daily_return'].std()
111 print("Sharpe: ",sharpe)
112 print("=================================")
113 df_rewards = pd.DataFrame(self.rewards_memory)
114 df_rewards.to_csv('account_rewards_train.csv')
115
116 return self.state, self.reward, self.terminal,{}
117
118 else:
119 actions = actions * HMAX_NORMALIZE
120
121 begin_total_asset = self.state[0]+ \
122 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):61]))
123 #print("begin_total_asset:{}".format(begin_total_asset))
124
125 argsort_actions = np.argsort(actions)
126
127 sell_index = argsort_actions[:np.where(actions < 0)[0].shape[0]]
128 buy_index = argsort_actions[::-1][:np.where(actions > 0)[0].shape[0]]
129
130 for index in sell_index:
131 # print('take sell action'.format(actions[index]))
132 self._sell_stock(index, actions[index])
133
134 for index in buy_index:
135 # print('take buy action: {}'.format(actions[index]))
136 self._buy_stock(index, actions[index])
137
138 self.day += 1
139 self.data = self.df.loc[self.day,:]
140 #load next state
141 # print("stock_shares:{}".format(self.state[29:]))
142 self.state = [self.state[0]] + \
143 self.data.adjcp.values.tolist() + \
144 list(self.state[(STOCK_DIM+1):61]) + \
145 self.data.macd.values.tolist() + \
146 self.data.rsi.values.tolist()
147
148 end_total_asset = self.state[0]+ \
149 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):61]))
150
151 #print("end_total_asset:{}".format(end_total_asset))
152
153 self.reward = end_total_asset - begin_total_asset
154 self.rewards_memory.append(self.reward)
155
156 self.reward = self.reward * REWARD_SCALING
157 # print("step_reward:{}".format(self.reward))
158
159 self.asset_memory.append(end_total_asset)
160
161
162 return self.state, self.reward, self.terminal, {}
163
164 def reset(self):
165 self.asset_memory = [INITIAL_ACCOUNT_BALANCE]
166 self.day = 0
167 self.data = self.df.loc[self.day,:]
168 self.cost = 0
169 self.trades = 0
170 self.terminal = False
171 self.rewards_memory = []
172 #initiate state
173 self.state = [INITIAL_ACCOUNT_BALANCE] + \
174 self.data.adjcp.values.tolist() + \
175 [0]*STOCK_DIM + \
176 self.data.macd.values.tolist() + \
177 self.data.rsi.values.tolist()
178 return self.state
179
180 def render(self, mode='human'):
181 return self.state
182
183 def _seed(self, seed=None):
184 self.np_random, seed = seeding.np_random(seed)
185 return [seed]

Step 4.2: Environment for Trading

 1## Environment for Trading
 2import numpy as np
 3import pandas as pd
 4from gym.utils import seeding
 5import gym
 6from gym import spaces
 7import matplotlib
 8matplotlib.use('Agg')
 9import matplotlib.pyplot as plt
 10
 11# shares normalization factor
 12# 100 shares per trade
 13HMAX_NORMALIZE = 100
 14# initial amount of money we have in our account
 15INITIAL_ACCOUNT_BALANCE=1000000
 16# total number of stocks in our portfolio
 17STOCK_DIM = 30
 18# transaction fee: 1/1000 reasonable percentage
 19TRANSACTION_FEE_PERCENT = 0.001
 20
 21# turbulence index: 90-150 reasonable threshold
 22#TURBULENCE_THRESHOLD = 140
 23REWARD_SCALING = 1e-4
 24
 25class StockEnvTrade(gym.Env):
 26 """A stock trading environment for OpenAI gym"""
 27 metadata = {'render.modes': ['human']}
 28
 29 def __init__(self, df,day = 0,turbulence_threshold=140):
 30 #super(StockEnv, self).__init__()
 31 #money = 10 , scope = 1
 32 self.day = day
 33 self.df = df
 34 # action_space normalization and shape is STOCK_DIM
 35 self.action_space = spaces.Box(low = -1, high = 1,shape = (STOCK_DIM,))
 36 # Shape = 181: [Current Balance]+[prices 1-30]+[owned shares 1-30]
 37 # +[macd 1-30]+ [rsi 1-30] + [cci 1-30] + [adx 1-30]
 38 self.observation_space = spaces.Box(low=0, high=np.inf, shape = (121,))
 39 # load data from a pandas dataframe
 40 self.data = self.df.loc[self.day,:]
 41 self.terminal = False
 42 self.turbulence_threshold = turbulence_threshold
 43 # initalize state
 44 self.state = [INITIAL_ACCOUNT_BALANCE] + \
 45 self.data.adjcp.values.tolist() + \
 46 [0]*STOCK_DIM + \
 47 self.data.macd.values.tolist() + \
 48 self.data.rsi.values.tolist()
 49
 50 # initialize reward
 51 self.reward = 0
 52 self.turbulence = 0
 53 self.cost = 0
 54 self.trades = 0
 55 # memorize all the total balance change
 56 self.asset_memory = [INITIAL_ACCOUNT_BALANCE]
 57 self.rewards_memory = []
 58 self.actions_memory=[]
 59 self.date_memory=[]
 60 self._seed()
 61
 62
 63 def _sell_stock(self, index, action):
 64 # perform sell action based on the sign of the action
 65 if self.turbulence<self.turbulence_threshold:
 66 if self.state[index+STOCK_DIM+1] > 0:
 67 #update balance
 68 self.state[0] += \
 69 self.state[index+1]*min(abs(action),self.state[index+STOCK_DIM+1]) * \
 70 (1- TRANSACTION_FEE_PERCENT)
 71
 72 self.state[index+STOCK_DIM+1] -= min(abs(action), self.state[index+STOCK_DIM+1])
 73 self.cost +=self.state[index+1]*min(abs(action),self.state[index+STOCK_DIM+1]) * \
 74 TRANSACTION_FEE_PERCENT
 75 self.trades+=1
 76 else:
 77 pass
 78 else:
 79 # if turbulence goes over threshold, just clear out all positions
 80 if self.state[index+STOCK_DIM+1] > 0:
 81 #update balance
 82 self.state[0] += self.state[index+1]*self.state[index+STOCK_DIM+1]* \
 83 (1- TRANSACTION_FEE_PERCENT)
 84 self.state[index+STOCK_DIM+1] =0
 85 self.cost += self.state[index+1]*self.state[index+STOCK_DIM+1]* \
 86 TRANSACTION_FEE_PERCENT
 87 self.trades+=1
 88 else:
 89 pass
 90
 91 def _buy_stock(self, index, action):
 92 # perform buy action based on the sign of the action
 93 if self.turbulence< self.turbulence_threshold:
 94 available_amount = self.state[0] // self.state[index+1]
 95 # print('available_amount:{}'.format(available_amount))
 96
 97 #update balance
 98 self.state[0] -= self.state[index+1]*min(available_amount, action)* \
 99 (1+ TRANSACTION_FEE_PERCENT)
100
101 self.state[index+STOCK_DIM+1] += min(available_amount, action)
102
103 self.cost+=self.state[index+1]*min(available_amount, action)* \
104 TRANSACTION_FEE_PERCENT
105 self.trades+=1
106 else:
107 # if turbulence goes over threshold, just stop buying
108 pass
109
110 def step(self, actions):
111 # print(self.day)
112 self.terminal = self.day >= len(self.df.index.unique())-1
113 # print(actions)
114
115 if self.terminal:
116 plt.plot(self.asset_memory,'r')
117 plt.savefig('account_value_trade.png')
118 plt.close()
119
120 df_date = pd.DataFrame(self.date_memory)
121 df_date.columns = ['datadate']
122 df_date.to_csv('df_date.csv')
123
124
125 df_actions = pd.DataFrame(self.actions_memory)
126 df_actions.columns = self.data.tic.values
127 df_actions.index = df_date.datadate
128 df_actions.to_csv('df_actions.csv')
129
130 df_total_value = pd.DataFrame(self.asset_memory)
131 df_total_value.to_csv('account_value_trade.csv')
132 end_total_asset = self.state[0]+ \
133 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):(STOCK_DIM*2+1)]))
134 print("previous_total_asset:{}".format(self.asset_memory[0]))
135
136 print("end_total_asset:{}".format(end_total_asset))
137 print("total_reward:{}".format(self.state[0]+sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):61]))- self.asset_memory[0]))
138 print("total_cost: ", self.cost)
139 print("total trades: ", self.trades)
140
141 df_total_value.columns = ['account_value']
142 df_total_value['daily_return']=df_total_value.pct_change(1)
143 sharpe = (252**0.5)*df_total_value['daily_return'].mean()/ \
144 df_total_value['daily_return'].std()
145 print("Sharpe: ",sharpe)
146
147 df_rewards = pd.DataFrame(self.rewards_memory)
148 df_rewards.to_csv('account_rewards_trade.csv')
149
150 # print('total asset: {}'.format(self.state[0]+ sum(np.array(self.state[1:29])*np.array(self.state[29:]))))
151 #with open('obs.pkl', 'wb') as f:
152 # pickle.dump(self.state, f)
153
154 return self.state, self.reward, self.terminal,{}
155
156 else:
157 # print(np.array(self.state[1:29]))
158 self.date_memory.append(self.data.datadate.unique())
159
160 #print(self.data)
161 actions = actions * HMAX_NORMALIZE
162 if self.turbulence>=self.turbulence_threshold:
163 actions=np.array([-HMAX_NORMALIZE]*STOCK_DIM)
164 self.actions_memory.append(actions)
165
166 #actions = (actions.astype(int))
167
168 begin_total_asset = self.state[0]+ \
169 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):(STOCK_DIM*2+1)]))
170 #print("begin_total_asset:{}".format(begin_total_asset))
171
172 argsort_actions = np.argsort(actions)
173 #print(argsort_actions)
174
175 sell_index = argsort_actions[:np.where(actions < 0)[0].shape[0]]
176 buy_index = argsort_actions[::-1][:np.where(actions > 0)[0].shape[0]]
177
178 for index in sell_index:
179 # print('take sell action'.format(actions[index]))
180 self._sell_stock(index, actions[index])
181
182 for index in buy_index:
183 # print('take buy action: {}'.format(actions[index]))
184 self._buy_stock(index, actions[index])
185
186 self.day += 1
187 self.data = self.df.loc[self.day,:]
188 self.turbulence = self.data['turbulence'].values[0]
189 #print(self.turbulence)
190 #load next state
191 # print("stock_shares:{}".format(self.state[29:]))
192 self.state = [self.state[0]] + \
193 self.data.adjcp.values.tolist() + \
194 list(self.state[(STOCK_DIM+1):(STOCK_DIM*2+1)]) + \
195 self.data.macd.values.tolist() + \
196 self.data.rsi.values.tolist()
197
198 end_total_asset = self.state[0]+ \
199 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):(STOCK_DIM*2+1)]))
200
201 #print("end_total_asset:{}".format(end_total_asset))
202
203 self.reward = end_total_asset - begin_total_asset
204 self.rewards_memory.append(self.reward)
205
206 self.reward = self.reward * REWARD_SCALING
207
208 self.asset_memory.append(end_total_asset)
209
210 return self.state, self.reward, self.terminal, {}
211
212 def reset(self):
213 self.asset_memory = [INITIAL_ACCOUNT_BALANCE]
214 self.day = 0
215 self.data = self.df.loc[self.day,:]
216 self.turbulence = 0
217 self.cost = 0
218 self.trades = 0
219 self.terminal = False
220 #self.iteration=self.iteration
221 self.rewards_memory = []
222 self.actions_memory=[]
223 self.date_memory=[]
224 #initiate state
225 self.state = [INITIAL_ACCOUNT_BALANCE] + \
226 self.data.adjcp.values.tolist() + \
227 [0]*STOCK_DIM + \
228 self.data.macd.values.tolist() + \
229 self.data.rsi.values.tolist()
230
231 return self.state
232
233 def render(self, mode='human',close=False):
234 return self.state
235
236
237 def _seed(self, seed=None):
238 self.np_random, seed = seeding.np_random(seed)
239 return [seed]

Step 5: Implement DRL Algorithms

The implementation of the DRL algorithms are based on OpenAI Baselines and Stable Baselines. Stable Baselines is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.

Step 5.1: Training data split: 2009-01-01 to 2018-12-31

 1def data_split(df,start,end):
 2 """
 3 split the dataset into training or testing using date
 4 :param data: (df) pandas dataframe, start, end
 5 :return: (df) pandas dataframe
 6 """
 7 data = df[(df.datadate >= start) & (df.datadate < end)]
 8 data=data.sort_values(['datadate','tic'],ignore_index=True)
 9 data.index = data.datadate.factorize()[0]
10 return data

Step 5.2: Model training: DDPG

 1## tensorboard --logdir ./multiple_stock_tensorboard/
 2# add noise to the action in DDPG helps in learning for better exploration
 3n_actions = env_train.action_space.shape[-1]
 4param_noise = None
 5action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions))
 6
 7# model settings
 8model_ddpg = DDPG('MlpPolicy',
 9 env_train,
10 batch_size=64,
11 buffer_size=100000,
12 param_noise=param_noise,
13 action_noise=action_noise,
14 verbose=0,
15 tensorboard_log="./multiple_stock_tensorboard/")
16
17## 250k timesteps: took about 20 mins to finish
18model_ddpg.learn(total_timesteps=250000, tb_log_name="DDPG_run_1")

Step 5.3: Trading

Assume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks.

Step 5.4: Set turbulence threshold

Set the turbulence threshold to be the 99% quantile of insample turbulence data, if current turbulence index is greater than the threshold, then we assume that the current market is volatile

1insample_turbulence = dow_30[(dow_30.datadate<'2019-01-01') & (dow_30.datadate>='2009-01-01')]
2insample_turbulence = insample_turbulence.drop_duplicates(subset=['datadate'])

Step 5.5: Prepare test data and environment

1# test data
2test = data_split(dow_30, start='2019-01-01', end='2020-10-30')
3# testing env
4env_test = DummyVecEnv([lambda: StockEnvTrade(test, turbulence_threshold=insample_turbulence_threshold)])
5obs_test = env_test.reset()

Step 5.6: Prediction

1def DRL_prediction(model, data, env, obs):
2 print("==============Model Prediction===========")
3 for i in range(len(data.index.unique())):
4 action, _states = model.predict(obs)
5 obs, rewards, dones, info = env.step(action)
6 env.render()

Step 6: Backtest Our Strategy

For simplicity purposes, in the article, we just calculate the Sharpe ratio and the annual return manually.

1def backtest_strat(df):
2 strategy_ret= df.copy()
3 strategy_ret['Date'] = pd.to_datetime(strategy_ret['Date'])
4 strategy_ret.set_index('Date', drop = False, inplace = True)
5 strategy_ret.index = strategy_ret.index.tz_localize('UTC')
6 del strategy_ret['Date']
7 ts = pd.Series(strategy_ret['daily_return'].values, index=strategy_ret.index)
8 return ts

Step 6.1: Dow Jones Industrial Average

1def get_buy_and_hold_sharpe(test):
2 test['daily_return']=test['adjcp'].pct_change(1)
3 sharpe = (252**0.5)*test['daily_return'].mean()/ \
4 test['daily_return'].std()
5 annual_return = ((test['daily_return'].mean()+1)**252-1)*100
6 print("annual return: ", annual_return)
7
8 print("sharpe ratio: ", sharpe)
9 #return sharpe

Step 6.2: Our DRL trading strategy

 1def get_daily_return(df):
 2 df['daily_return']=df.account_value.pct_change(1)
 3 #df=df.dropna()
 4 sharpe = (252**0.5)*df['daily_return'].mean()/ \
 5 df['daily_return'].std()
 6
 7 annual_return = ((df['daily_return'].mean()+1)**252-1)*100
 8 print("annual return: ", annual_return)
 9 print("sharpe ratio: ", sharpe)
10 return df

Step 6.3: Plot the results using Quantopian pyfolio

Backtesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy.

1%matplotlib inline
2with pyfolio.plotting.plotting_context(font_scale=1.1):
3 pyfolio.create_full_tear_sheet(returns = DRL_strat,
4 benchmark_rets=dow_strat, set_context=False)

 Portfolio Allocation

Portfolio Allocation

Our paper:
FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance [https://arxiv.org/abs/2011.09607].

Presented at NeurIPS 2020: Deep RL Workshop.

The Jupyter notebook codes are available on our Github [https://github.com/AI4Finance-LLC/FinRL-Library] and Google Colab [https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_multiple_stock_trading.ipynb].

Tip

	FinRL Single Stock Trading [https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_single_stock_trading.ipynb] at Google Colab.

	FinRL Multiple Stocks Trading [https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_multiple_stock_trading.ipynb] at Google Colab:

Check our previous tutorials: Single Stock Trading [https://finrl.readthedocs.io/en/latest/tutorial/SingleStockTrading.html] and Multiple Stock Trading [https://finrl.readthedocs.io/en/latest/tutorial/MultipleStockTrading.html] for detailed explanation of the FinRL architecture and modules.

Overview

To begin with, we would like to explain the logic of portfolio allocation using Deep Reinforcement Learning.We use Dow 30 constituents as an example throughout this article, because those are the most popular stocks.

Let’s say that we got a million dollars at the beginning of 2019. We want to invest this $1,000,000 into stock markets, in this case is Dow Jones 30 constituents.Assume that no margin, no short sale, no treasury bill (use all the money to trade only these 30 stocks). So that the weight of each individual stock is non-negative, and the weights of all the stocks add up to one.

We hire a smart portfolio manager- Mr. Deep Reinforcement Learning. Mr. DRL will give us daily advice includes the portfolio weights or the proportions of money to invest in these 30 stocks. So every day we just need to rebalance the portfolio weights of the stocks.The basic logic is as follows.

[image: tutorial/image/portfolio_allocation_1.png]
Portfolio allocation is different from multiple stock trading because we are essentially rebalancing the weights at each time step, and we have to use all available money.

The traditional and the most popular way of doing portfolio allocation is mean-variance or modern portfolio theory (MPT):

[image: image/portfolio_allocation_2.png]
However, MPT performs not so well in out-of-sample data. MPT is calculated only based on stock returns, if we want to take other relevant factors into account, for example some of the technical indicators like MACD or RSI, MPT may not be able to combine these information together well.

We introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance. FinRL is a DRL library designed specifically for automated stock trading with an effort for educational and demonstrative purpose.

This article is focusing on one of the use cases in our paper: Portfolio Allocation. We use one Jupyter notebook to include all the necessary steps.

Problem Definition

This problem is to design an automated trading solution for portfolio allocation. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.

The components of the reinforcement learning environment are:

	Action: portfolio weight of each stock is within [0,1]. We use softmax function to normalize the actions to sum to 1.

	State: {Covariance Matrix, MACD, RSI, CCI, ADX}, **state space shape is (34, 30). 34 is the number of rows, 30 is the number of columns.

	Reward function: r(s, a, s′) = p_t, p_t is the cumulative portfolio value.

	Environment: portfolio allocation for Dow 30 constituents.

Covariance matrix is a good feature because portfolio managers use it to quantify the risk (standard deviation) associated with a particular portfolio.

We also assume no transaction cost, because we are trying to make a simple portfolio allocation case as a starting point.

Load Python Packages

Install the unstable development version of FinRL:

1 # Install the unstable development version in Jupyter notebook:
2 !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git

Import Packages:

 1 # import packages
 2 import pandas as pd
 3 import numpy as np
 4 import matplotlib
 5 import matplotlib.pyplot as plt
 6 matplotlib.use('Agg')
 7 import datetime
 8
 9 from finrl import config
10 from finrl import config_tickers
11 from finrl.marketdata.yahoodownloader import YahooDownloader
12 from finrl.preprocessing.preprocessors import FeatureEngineer
13 from finrl.preprocessing.data import data_split
14 from finrl.env.environment import EnvSetup
15 from finrl.env.EnvMultipleStock_train import StockEnvTrain
16 from finrl.env.EnvMultipleStock_trade import StockEnvTrade
17 from finrl.model.models import DRLAgent
18 from finrl.trade.backtest import BackTestStats, BaselineStats, BackTestPlot, backtest_strat, baseline_strat
19 from finrl.trade.backtest import backtest_strat, baseline_strat
20
21 import os
22 if not os.path.exists("./" + config.DATA_SAVE_DIR):
23 os.makedirs("./" + config.DATA_SAVE_DIR)
24 if not os.path.exists("./" + config.TRAINED_MODEL_DIR):
25 os.makedirs("./" + config.TRAINED_MODEL_DIR)
26 if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR):
27 os.makedirs("./" + config.TENSORBOARD_LOG_DIR)
28 if not os.path.exists("./" + config.RESULTS_DIR):
29 os.makedirs("./" + config.RESULTS_DIR)

Download Data

FinRL uses a YahooDownloader class to extract data.

class YahooDownloader:
 """
 Provides methods for retrieving daily stock data from Yahoo Finance API

 Attributes

 start_date : str
 start date of the data (modified from config.py)
 end_date : str
 end date of the data (modified from config.py)
 ticker_list : list
 a list of stock tickers (modified from config.py)

 Methods

 fetch_data()
 Fetches data from yahoo API
 """

Download and save the data in a pandas DataFrame:

1 # Download and save the data in a pandas DataFrame:
2 df = YahooDownloader(start_date = '2008-01-01',
3 end_date = '2020-12-01',
4 ticker_list = config_tickers.DOW_30_TICKER).fetch_data()

Preprocess Data

FinRL uses a FeatureEngineer class to preprocess data.

class FeatureEngineer:
 """
 Provides methods for preprocessing the stock price data

 Attributes

 df: DataFrame
 data downloaded from Yahoo API
 feature_number : int
 number of features we used
 use_technical_indicator : boolean
 we technical indicator or not
 use_turbulence : boolean
 use turbulence index or not

 Methods

 preprocess_data()
 main method to do the feature engineering
 """

Perform Feature Engineering: covariance matrix + technical indicators:

 1 # Perform Feature Engineering:
 2 df = FeatureEngineer(df.copy(),
 3 use_technical_indicator=True,
 4 use_turbulence=False).preprocess_data()
 5
 6
 7 # add covariance matrix as states
 8 df=df.sort_values(['date','tic'],ignore_index=True)
 9 df.index = df.date.factorize()[0]
10
11 cov_list = []
12 # look back is one year
13 lookback=252
14 for i in range(lookback,len(df.index.unique())):
15 data_lookback = df.loc[i-lookback:i,:]
16 price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values = 'close')
17 return_lookback = price_lookback.pct_change().dropna()
18 covs = return_lookback.cov().values
19 cov_list.append(covs)
20
21 df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list})
22 df = df.merge(df_cov, on='date')
23 df = df.sort_values(['date','tic']).reset_index(drop=True)
24 df.head()

[image: image/portfolio_allocation_3.png]

Build Environment

FinRL uses a EnvSetup class to setup environment.

class EnvSetup:
 """
 Provides methods for retrieving daily stock data from
 Yahoo Finance API

 Attributes

 stock_dim: int
 number of unique stocks
 hmax : int
 maximum number of shares to trade
 initial_amount: int
 start money
 transaction_cost_pct : float
 transaction cost percentage per trade
 reward_scaling: float
 scaling factor for reward, good for training
 tech_indicator_list: list
 a list of technical indicator names (modified from config.py)
 Methods

 create_env_training()
 create env class for training
 create_env_validation()
 create env class for validation
 create_env_trading()
 create env class for trading
 """

Initialize an environment class:

User-defined Environment: a simulation environment class.The environment for portfolio allocation:

 1 import numpy as np
 2 import pandas as pd
 3 from gym.utils import seeding
 4 import gym
 5 from gym import spaces
 6 import matplotlib
 7 matplotlib.use('Agg')
 8 import matplotlib.pyplot as plt
 9
 10 class StockPortfolioEnv(gym.Env):
 11 """A single stock trading environment for OpenAI gym
 12 Attributes
 13 ----------
 14 df: DataFrame
 15 input data
 16 stock_dim : int
 17 number of unique stocks
 18 hmax : int
 19 maximum number of shares to trade
 20 initial_amount : int
 21 start money
 22 transaction_cost_pct: float
 23 transaction cost percentage per trade
 24 reward_scaling: float
 25 scaling factor for reward, good for training
 26 state_space: int
 27 the dimension of input features
 28 action_space: int
 29 equals stock dimension
 30 tech_indicator_list: list
 31 a list of technical indicator names
 32 turbulence_threshold: int
 33 a threshold to control risk aversion
 34 day: int
 35 an increment number to control date
 36 Methods
 37 -------
 38 _sell_stock()
 39 perform sell action based on the sign of the action
 40 _buy_stock()
 41 perform buy action based on the sign of the action
 42 step()
 43 at each step the agent will return actions, then
 44 we will calculate the reward, and return the next observation.
 45 reset()
 46 reset the environment
 47 render()
 48 use render to return other functions
 49 save_asset_memory()
 50 return account value at each time step
 51 save_action_memory()
 52 return actions/positions at each time step
 53
 54 """
 55 metadata = {'render.modes': ['human']}
 56
 57 def __init__(self,
 58 df,
 59 stock_dim,
 60 hmax,
 61 initial_amount,
 62 transaction_cost_pct,
 63 reward_scaling,
 64 state_space,
 65 action_space,
 66 tech_indicator_list,
 67 turbulence_threshold,
 68 lookback=252,
 69 day = 0):
 70 #super(StockEnv, self).__init__()
 71 #money = 10 , scope = 1
 72 self.day = day
 73 self.lookback=lookback
 74 self.df = df
 75 self.stock_dim = stock_dim
 76 self.hmax = hmax
 77 self.initial_amount = initial_amount
 78 self.transaction_cost_pct =transaction_cost_pct
 79 self.reward_scaling = reward_scaling
 80 self.state_space = state_space
 81 self.action_space = action_space
 82 self.tech_indicator_list = tech_indicator_list
 83
 84 # action_space normalization and shape is self.stock_dim
 85 self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,))
 86 # Shape = (34, 30)
 87 # covariance matrix + technical indicators
 88 self.observation_space = spaces.Box(low=0,
 89 high=np.inf,
 90 shape = (self.state_space+len(self.tech_indicator_list),
 91 self.state_space))
 92
 93 # load data from a pandas dataframe
 94 self.data = self.df.loc[self.day,:]
 95 self.covs = self.data['cov_list'].values[0]
 96 self.state = np.append(np.array(self.covs),
 97 [self.data[tech].values.tolist() for tech in self.tech_indicator_list], axis=0)
 98 self.terminal = False
 99 self.turbulence_threshold = turbulence_threshold
100 # initalize state: inital portfolio return + individual stock return + individual weights
101 self.portfolio_value = self.initial_amount
102
103 # memorize portfolio value each step
104 self.asset_memory = [self.initial_amount]
105 # memorize portfolio return each step
106 self.portfolio_return_memory = [0]
107 self.actions_memory=[[1/self.stock_dim]*self.stock_dim]
108 self.date_memory=[self.data.date.unique()[0]]
109
110
111 def step(self, actions):
112 # print(self.day)
113 self.terminal = self.day >= len(self.df.index.unique())-1
114 # print(actions)
115
116 if self.terminal:
117 df = pd.DataFrame(self.portfolio_return_memory)
118 df.columns = ['daily_return']
119 plt.plot(df.daily_return.cumsum(),'r')
120 plt.savefig('results/cumulative_reward.png')
121 plt.close()
122
123 plt.plot(self.portfolio_return_memory,'r')
124 plt.savefig('results/rewards.png')
125 plt.close()
126
127 print("=================================")
128 print("begin_total_asset:{}".format(self.asset_memory[0]))
129 print("end_total_asset:{}".format(self.portfolio_value))
130
131 df_daily_return = pd.DataFrame(self.portfolio_return_memory)
132 df_daily_return.columns = ['daily_return']
133 if df_daily_return['daily_return'].std() !=0:
134 sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \
135 df_daily_return['daily_return'].std()
136 print("Sharpe: ",sharpe)
137 print("=================================")
138
139 return self.state, self.reward, self.terminal,{}
140
141 else:
142 #print(actions)
143 # actions are the portfolio weight
144 # normalize to sum of 1
145 norm_actions = (np.array(actions) - np.array(actions).min()) / (np.array(actions) - np.array(actions).min()).sum()
146 weights = norm_actions
147 #print(weights)
148 self.actions_memory.append(weights)
149 last_day_memory = self.data
150
151 #load next state
152 self.day += 1
153 self.data = self.df.loc[self.day,:]
154 self.covs = self.data['cov_list'].values[0]
155 self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list], axis=0)
156 # calcualte portfolio return
157 # individual stocks' return * weight
158 portfolio_return = sum(((self.data.close.values / last_day_memory.close.values)-1)*weights)
159 # update portfolio value
160 new_portfolio_value = self.portfolio_value*(1+portfolio_return)
161 self.portfolio_value = new_portfolio_value
162
163 # save into memory
164 self.portfolio_return_memory.append(portfolio_return)
165 self.date_memory.append(self.data.date.unique()[0])
166 self.asset_memory.append(new_portfolio_value)
167
168 # the reward is the new portfolio value or end portfolo value
169 self.reward = new_portfolio_value
170 #self.reward = self.reward*self.reward_scaling
171
172
173 return self.state, self.reward, self.terminal, {}
174
175 def reset(self):
176 self.asset_memory = [self.initial_amount]
177 self.day = 0
178 self.data = self.df.loc[self.day,:]
179 # load states
180 self.covs = self.data['cov_list'].values[0]
181 self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist() for tech in self.tech_indicator_list], axis=0)
182 self.portfolio_value = self.initial_amount
183 #self.cost = 0
184 #self.trades = 0
185 self.terminal = False
186 self.portfolio_return_memory = [0]
187 self.actions_memory=[[1/self.stock_dim]*self.stock_dim]
188 self.date_memory=[self.data.date.unique()[0]]
189 return self.state
190
191 def render(self, mode='human'):
192 return self.state
193
194 def save_asset_memory(self):
195 date_list = self.date_memory
196 portfolio_return = self.portfolio_return_memory
197 #print(len(date_list))
198 #print(len(asset_list))
199 df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_return})
200 return df_account_value
201
202 def save_action_memory(self):
203 # date and close price length must match actions length
204 date_list = self.date_memory
205 df_date = pd.DataFrame(date_list)
206 df_date.columns = ['date']
207
208 action_list = self.actions_memory
209 df_actions = pd.DataFrame(action_list)
210 df_actions.columns = self.data.tic.values
211 df_actions.index = df_date.date
212 #df_actions = pd.DataFrame({'date':date_list,'actions':action_list})
213 return df_actions
214
215 def _seed(self, seed=None):
216 self.np_random, seed = seeding.np_random(seed)
217 return [seed]

Implement DRL Algorithms

FinRL uses a DRLAgent class to implement the algorithms.

class DRLAgent:
 """
 Provides implementations for DRL algorithms

 Attributes

 env: gym environment class
 user-defined class
 Methods

 train_PPO()
 the implementation for PPO algorithm
 train_A2C()
 the implementation for A2C algorithm
 train_DDPG()
 the implementation for DDPG algorithm
 train_TD3()
 the implementation for TD3 algorithm
 DRL_prediction()
 make a prediction in a test dataset and get results
 """

Model Training:

We use A2C for portfolio allocation, because it is stable, cost-effective, faster and works better with large batch sizes.

Trading:Assume that we have $1,000,000 initial capital at 2019/01/01. We use the A2C model to perform portfolio allocation of the Dow 30 stocks.

1 trade = data_split(df,'2019-01-01', '2020-12-01')
2
3 env_trade, obs_trade = env_setup.create_env_trading(data = trade,
4 env_class = StockPortfolioEnv)
5
6 df_daily_return, df_actions = DRLAgent.DRL_prediction(model=model_a2c,
7 test_data = trade,
8 test_env = env_trade,
9 test_obs = obs_trade)

[image: image/portfolio_allocation_4.png]
The output actions or the portfolio weights look like this:

[image: image/portfolio_allocation_5.png]

Backtesting Performance

FinRL uses a set of functions to do the backtesting with Quantopian pyfolio.

 1 from pyfolio import timeseries
 2 DRL_strat = backtest_strat(df_daily_return)
 3 perf_func = timeseries.perf_stats
 4 perf_stats_all = perf_func(returns=DRL_strat,
 5 factor_returns=DRL_strat,
 6 positions=None, transactions=None, turnover_denom="AGB")
 7 print("==============DRL Strategy Stats===========")
 8 perf_stats_all
 9 print("==============Get Index Stats===========")
10 baesline_perf_stats=BaselineStats('^DJI',
11 baseline_start = '2019-01-01',
12 baseline_end = '2020-12-01')
13
14
15 # plot
16 dji, dow_strat = baseline_strat('^DJI','2019-01-01','2020-12-01')
17 import pyfolio
18 %matplotlib inline
19 with pyfolio.plotting.plotting_context(font_scale=1.1):
20 pyfolio.create_full_tear_sheet(returns = DRL_strat,
21 benchmark_rets=dow_strat, set_context=False)

The left table is the stats for backtesting performance, the right table is the stats for Index (DJIA) performance.

Plots:

 Single Stock Trading

Single Stock Trading

Deep Reinforcement Learning for Stock Trading from Scratch: Single Stock Trading

Tip

Run the code step by step at Google Colab [https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/examples/old/DRL_single_stock_trading.ipynb].

Step 1: Preparation

Step 1.1: Overview

As deep reinforcement learning (DRL) has been recognized as an effective approach in quantitative finance, getting hands-on experiences is attractive to beginners. However, to train a practical DRL trading agent that decides where to trade, at what price, and what quantity involves error-prone and arduous development and debugging.

We introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop their own stock trading strategies. Along with easily-reproducible tutorials, FinRL library allows users to streamline their own developments and to compare with existing schemes easily.

FinRL is a beginner-friendly library with fine-tuned standard DRL algorithms. It has been developed under three primary principles:

	Completeness: Our library shall cover components of the DRL framework completely, which is a fundamental requirement;

	Hands-on tutorials: We aim for a library that is friendly to beginners. Tutorials with detailed walk-through will help users to explore the functionalities of our library;

	Reproducibility: Our library shall guarantee reproducibility to ensure the transparency and also provide users with confidence in what they have done

This article is focusing on one of the use cases in our paper: Single Stock Trading. We use one Jupyter notebook to include all the necessary steps.

We use Apple Inc. stock: AAPL as an example throughout this article, because it is one of the most popular stocks.

[image: ../../_images/FinRL-Architecture.png]
Step 1.2: Problem Definition

This problem is to design an automated trading solution for single stock trading. We model the stock trading process as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.

The components of the reinforcement learning environment are:

	Action: The action space describes the allowed actions that the agent interacts with the environment. Normally, a ∈ A includes three actions: a ∈ {−1, 0, 1}, where −1, 0, 1 represent selling, holding, and buying one stock. Also, an action can be carried upon multiple shares. We use an action space {−k, …, −1, 0, 1, …, k}, where k denotes the number of shares. For example, “Buy 10 shares of AAPL” or “Sell 10 shares of AAPL” are 10 or −10, respectively

	Reward function: r(s, a, s′) is the incentive mechanism for an agent to learn a better action. The change of the portfolio value when action a is taken at state s and arriving at new state s’, i.e., r(s, a, s′) = v′ − v, where v′ and v represent the portfolio values at state s′ and s, respectively

	State: The state space describes the observations that the agent receives from the environment. Just as a human trader needs to analyze various information before executing a trade, so our trading agent observes many different features to better learn in an interactive environment.

	Environment: single stock trading for AAPL

The data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close price and volume.

Step 1.3: Python Package Installation

As a first step we check if the additional packages needed are present, if not install them.

	Yahoo Finance API

	pandas

	matplotlib

	stockstats

	OpenAI gym

	stable-baselines

	tensorflow

 1import pkg_resources
 2import pip
 3installedPackages = {pkg.key for pkg in pkg_resources.working_set}
 4required = {'yfinance', 'pandas', 'matplotlib', 'stockstats','stable-baselines','gym','tensorflow'}
 5missing = required - installedPackages
 6if missing:
 7 !pip install yfinance
 8 !pip install pandas
 9 !pip install matplotlib
10 !pip install stockstats
11 !pip install gym
12 !pip install stable-baselines[mpi]
13 !pip install tensorflow==1.15.4

Step 1.4: Import packages

 1import yfinance as yf
 2from stockstats import StockDataFrame as Sdf
 3
 4import pandas as pd
 5import matplotlib.pyplot as plt
 6
 7import gym
 8from stable_baselines import PPO2, DDPG, A2C, ACKTR, TD3
 9from stable_baselines import DDPG
10from stable_baselines import A2C
11from stable_baselines import SAC
12from stable_baselines.common.vec_env import DummyVecEnv
13from stable_baselines.common.policies import MlpPolicy

Step 2: Download Data

Yahoo Finance [https://finance.yahoo.com/] is a website that provides stock data, financial news, financial reports, etc. All the data provided by Yahoo Finance is free.

This Medium blog [https://towardsdatascience.com/free-stock-data-for-python-using-yahoo-finance-api-9dafd96cad2e] explains how to use Yahoo Finance API to extract data directly in Python.

	FinRL uses a class YahooDownloader to fetch data from Yahoo Finance API

	Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or up to a total of 48,000 requests a day).

We can either download the stock data like open-high-low-close price manually by entering a stock ticker symbol like AAPL into the website search bar, or we just use Yahoo Finance API to extract data automatically.

FinRL uses a YahooDownloader [https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/marketdata/yahoodownloader.py] class to extract data.

class YahooDownloader:
 """
 Provides methods for retrieving daily stock data from Yahoo Finance API

 Attributes

 start_date : str
 start date of the data (modified from config.py)
 end_date : str
 end date of the data (modified from config.py)
 ticker_list : list
 a list of stock tickers (modified from config.py)

 Methods

 fetch_data()
 Fetches data from yahoo API
 """

Download and save the data in a pandas DataFrame:

1 # Download and save the data in a pandas DataFrame:
2 df = YahooDownloader(start_date = '2009-01-01',
3 end_date = '2020-09-30',
4 ticker_list = config_tickers.DOW_30_TICKER).fetch_data()
5
6 print(df.sort_values(['date','tic'],ignore_index=True).head(30))

[image: image/single_1.png]

Step 3: Preprocess Data

Data preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing data and do feature engineering in order to convert the data into a model-ready state.

	FinRL uses a FeatureEngineer class to preprocess the data

	Add technical indicators. In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc.

Calculate technical indicators

In practical trading, various information needs to be taken into account, for example the historical stock prices, current holding shares, technical indicators, etc.

	FinRL uses stockstats to calcualte technical indicators such as Moving Average Convergence Divergence (MACD), Relative Strength Index (RSI), Average Directional Index (ADX), Commodity Channel Index (CCI) and other various indicators and stats.

	stockstats: supplies a wrapper StockDataFrame based on the pandas.DataFrame with inline stock statistics/indicators support.

	we store the stockstats technical indicator column names in config.py

	config.INDICATORS = [‘macd’, ‘rsi_30’, ‘cci_30’, ‘dx_30’]

	User can add more technical indicators, check https://github.com/jealous/stockstats for different names

FinRL uses a FeatureEngineer [https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/preprocessing/preprocessors.py] class to preprocess data.

class FeatureEngineer:
 """
 Provides methods for preprocessing the stock price data

 Attributes

 df: DataFrame
 data downloaded from Yahoo API
 feature_number : int
 number of features we used
 use_technical_indicator : boolean
 we technical indicator or not
 use_turbulence : boolean
 use turbulence index or not

 Methods

 preprocess_data()
 main method to do the feature engineering
 """

Perform Feature Engineering:

1 # Perform Feature Engineering:
2 df = FeatureEngineer(df.copy(),
3 use_technical_indicator=True,
4 tech_indicator_list = config.INDICATORS,
5 use_turbulence=True,
6 user_defined_feature = False).preprocess_data()

Step 4: Build Environment

Considering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a Markov Decision Process (MDP) problem. The training process involves observing stock price change, taking an action and reward’s calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the trading agent will derive a trading strategy with the maximized rewards as time proceeds.

Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data according to the principle of time-driven simulation.

Environment design is one of the most important part in DRL, because it varies a lot from applications to applications and from markets to markets. We can’t use an environment for stock trading to trade bitcoin, and vice versa.

The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried upon multiple shares. We use an action space {-k,…,-1, 0, 1, …, k}, where k denotes the number of shares to buy and -k denotes the number of shares to sell. For example, “Buy 10 shares of AAPL” or “Sell 10 shares of AAPL” are 10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a Gaussian distribution, which needs to be normalized and symmetric.

In this article, I set k=200, the entire action space is 200*2+1 = 401 for AAPL.

FinRL uses a EnvSetup [https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/env/environment.py] class to setup environment.

class EnvSetup:

 """
 Provides methods for retrieving daily stock data from
 Yahoo Finance API

 Attributes

 stock_dim: int
 number of unique stocks
 hmax : int
 maximum number of shares to trade
 initial_amount: int
 start money
 transaction_cost_pct : float
 transaction cost percentage per trade
 reward_scaling: float
 scaling factor for reward, good for training
 tech_indicator_list: list
 a list of technical indicator names (modified from config.py)
 Methods

 fetch_data()
 Fetches data from yahoo API
 """

Initialize an environment class:

 1 # Initialize env:
 2 env_setup = EnvSetup(stock_dim = stock_dimension,
 3 state_space = state_space,
 4 hmax = 100,
 5 initial_amount = 1000000,
 6 transaction_cost_pct = 0.001,
 7 tech_indicator_list = config.INDICATORS)
 8
 9 env_train = env_setup.create_env_training(data = train,
10 env_class = StockEnvTrain)

User-defined Environment: a simulation environment class.

FinRL provides blueprint for single stock trading environment [https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/env/EnvSingleStock.py].

class SingleStockEnv(gym.Env):
 """
 A single stock trading environment for OpenAI gym

 Attributes

 df: DataFrame
 input data
 stock_dim : int
 number of unique stocks
 hmax : int
 maximum number of shares to trade
 initial_amount : int
 start money
 transaction_cost_pct: float
 transaction cost percentage per trade
 reward_scaling: float
 scaling factor for reward, good for training
 state_space: int
 the dimension of input features
 action_space: int
 equals stock dimension
 tech_indicator_list: list
 a list of technical indicator names
 turbulence_threshold: int
 a threshold to control risk aversion
 day: int
 an increment number to control date

 Methods

 _sell_stock()
 perform sell action based on the sign of the action
 _buy_stock()
 perform buy action based on the sign of the action
 step()
 at each step the agent will return actions, then
 we will calculate the reward, and return the next
 observation.
 reset()
 reset the environment
 render()
 use render to return other functions
 save_asset_memory()
 return account value at each time step
 save_action_memory()
 return actions/positions at each time step
 """

Tutorial for how to design a customized trading environment will be pulished in the future soon.

Step 5: Implement DRL Algorithms

The implementation of the DRL algorithms are based on OpenAI Baselines [https://github.com/openai/baselines] and Stable Baselines. Stable Baselines [https://github.com/hill-a/stable-baselines] is a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.

Tip

FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG, Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users to design their own DRL algorithms by adapting these DRL algorithms.

[image: ../../_images/alg_compare.png]
FinRL uses a DRLAgent class to implement the algorithms.

class DRLAgent:
 """
 Provides implementations for DRL algorithms

 Attributes

 env: gym environment class
 user-defined class
 Methods

 train_PPO()
 the implementation for PPO algorithm
 train_A2C()
 the implementation for A2C algorithm
 train_DDPG()
 the implementation for DDPG algorithm
 train_TD3()
 the implementation for TD3 algorithm
 DRL_prediction()
 make a prediction in a test dataset and get results
 """

Step 6: Model Training

We use 5 DRL models in this article, namely PPO, A2C, DDPG, SAC and TD3. I introduced these models in the previous article. TD3 is an improvement over DDPG.

Tensorboard: reward and loss function plot
We use tensorboard integration for hyperparameter tuning and model picking. Tensorboard generates nice looking charts.

Once the learn function is called, you can monitor the RL agent during or after the training, with the following bash command:

1 # cd to the tensorboard_log folder, run the following command
2 tensorboard --logdir ./A2C_20201127-19h01/
3 # you can also add past logging folder
4 tensorboard --logdir ./a2c_tensorboard/;./ppo2_tensorboard/

Total rewards for each of the algorithm:

[image: image/single_2.png]
total_timesteps (int): the total number of samples to train on. It is one of the most important hyperparameters, there are also other important parameters such as learning rate, batch size, buffer size, etc.

To compare these algorithms, I set the total_timesteps = 100k. If we set the total_timesteps too large, then we will face a risk of overfitting.

By observing the episode_reward chart, we can see that these algorithms will converge to an optimal policy eventually as the step grows. TD3 converges very fast.

actor_loss for DDPG and policy_loss for TD3:

[image: image/single_3.png]
[image: image/single_4.png]
Picking models

We pick the TD3 model, because it converges pretty fast and it’s a state of the art model over DDPG. By observing the episode_reward chart, TD3 doesn’t need to reach full 100k total_timesteps to converge.

Four models: PPO A2C, DDPG, TD3

Model 1: PPO

1#tensorboard --logdir ./single_stock_tensorboard/
2env_train = DummyVecEnv([lambda: SingleStockEnv(train)])
3model_ppo = PPO2('MlpPolicy', env_train, tensorboard_log="./single_stock_trading_2_tensorboard/")
4model_ppo.learn(total_timesteps=100000,tb_log_name="run_aapl_ppo")
5#model.save('AAPL_ppo_100k')

Model 2: DDPG

1#tensorboard --logdir ./single_stock_tensorboard/
2env_train = DummyVecEnv([lambda: SingleStockEnv(train)])
3model_ddpg = DDPG('MlpPolicy', env_train, tensorboard_log="./single_stock_trading_2_tensorboard/")
4model_ddpg.learn(total_timesteps=100000, tb_log_name="run_aapl_ddpg")
5#model.save('AAPL_ddpg_50k')

Model 3: A2C

1#tensorboard --logdir ./single_stock_tensorboard/
2env_train = DummyVecEnv([lambda: SingleStockEnv(train)])
3model_a2c = A2C('MlpPolicy', env_train, tensorboard_log="./single_stock_trading_2_tensorboard/")
4model_a2c.learn(total_timesteps=100000,tb_log_name="run_aapl_a2c")
5#model.save('AAPL_a2c_50k')

Model 4: TD3

1#tensorboard --logdir ./single_stock_tensorboard/
2#DQN<DDPG<TD3
3env_train = DummyVecEnv([lambda: SingleStockEnv(train)])
4model_td3 = TD3('MlpPolicy', env_train, tensorboard_log="./single_stock_trading_2_tensorboard/")
5model_td3.learn(total_timesteps=100000,tb_log_name="run_aapl_td3")
6#model.save('AAPL_td3_50k')

Testing data

1test = data_clean[(data_clean.datadate>='2019-01-01')]
2# the index needs to start from 0
3test=test.reset_index(drop=True)

Trading

Assume that we have $100,000 initial capital at 2019-01-01. We use the TD3 model to trade AAPL.

1model = model_td3
2env_test = DummyVecEnv([lambda: SingleStockEnv(test)])
3obs_test = env_test.reset()
4print("==============Model Prediction===========")
5for i in range(len(test.index.unique())):
6 action, _states = model.predict(obs_test)
7 obs_test, rewards, dones, info = env_test.step(action)
8 env_test.render()

1 # create trading env
2 env_trade, obs_trade = env_setup.create_env_trading(data = trade,
3 env_class = StockEnvTrade,
4 turbulence_threshold=250)
5 ## make a prediction and get the account value change
6 df_account_value = DRLAgent.DRL_prediction(model=model_sac,
7 test_data = trade,
8 test_env = env_trade,
9 test_obs = obs_trade)

[image: image/single_5.png]

Step 7: Backtest Our Strategy

Backtesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred because it reduces the human error.
We usually use the `Quantopian pyfolio`_ package to backtest our trading strategies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a trading strategy.

For simplicity purposes, in the article, we just calculate the Sharpe ratio and the annual return manually.

 1def get_DRL_sharpe():
 2 df_total_value=pd.read_csv('account_value.csv',index_col=0)
 3 df_total_value.columns = ['account_value']
 4 df_total_value['daily_return']=df_total_value.pct_change(1)
 5 sharpe = (252**0.5)*df_total_value['daily_return'].mean()/ \
 6 df_total_value['daily_return'].std()
 7
 8 annual_return = ((df_total_value['daily_return'].mean()+1)**252-1)*100
 9 print("annual return: ", annual_return)
10 print("sharpe ratio: ", sharpe)
11 return df_total_value
12
13
14def get_buy_and_hold_sharpe(test):
15 test['daily_return']=test['adjcp'].pct_change(1)
16 sharpe = (252**0.5)*test['daily_return'].mean()/ \
17 test['daily_return'].std()
18 annual_return = ((test['daily_return'].mean()+1)**252-1)*100
19 print("annual return: ", annual_return)
20
21 print("sharpe ratio: ", sharpe)
22 #return sharpe

_images/finrl_meta_dataops.png
Planning

_images/finrl_overview_drl.png
Trading Agents
| DQN || DDPG |
| PPO || SAC |
| A2c || 1D3)

St

([Shares |
(_Prices)

Technical
Indicators

Multi-Agent

\[DDPG J/

| Remaining Balance |

Prices of Stocks |

_images/finrl-meta_overview.png
Data Layer

Data Data Feature
Accessing| |[Cleaning| |Engineering

Environment Layer Agent Layer

1 Adiust _
parametersl

_images/finrl_framework.png
Applications

Stock Trading, High-Frequency Cryptocurrency Market User-defined
Portfolio Allocation Trading Trading Regulations Tasks
DRL Agents
DRL Libraries: ElegantRL, RLIib, Stable Baselines 3
DQN, D3QN AZC, MADDPG, User-designed
Double DQN e 12E) sAC PPO apPO . DRLAlgorithms
'Reward t State l Action
Market Environments
Historical Data API: Live Trading API: Market User-imported
e Eeiy Az Simulations Datasets

Yahoo! Finance QuantConnect

_images/multiple_1.jpeg
attime t

State: balance left, close price,
shares and technical indicators

calculated by open-high-low-close
price

DRL trader observes the state

DRL Trader

DRL trader outputs actions as Trading Signal

Treat 1 as a strong Buy signal,
-1 as a strong Sell Signal,

k = actions * h_max

Load
New State k is the shares to trade attimet,

Shares: {-k....,-1, 0, 1, ...k}

Calculate the dollar amount to trade attimet

Dollar amount: shares*close price at t

Trade

Update Balance and Shares

Take a step to timet+1

Calculate reward using close price at t+1:

Reward = V(t+1) - V(t)

_images/pycharm_MarkDirectoryAsSourcesRoot.png
@ PyCharm File Edit View Run
LE
aidfinance | BN FinRL
§ [Project ~ T % -
£ v maiafinance
M > MElegantRL
. > mFnRL
E > omA New >
S >
a0 ﬂ" Z“e’ & cut X
o Seral iy copy xC
2 Copy Path...
S 0O paste 2V
£ Find Usages xF7
I‘; Find in Files... ORF
Replace i File QR
Inspect Code...
Refactor >
Clean Python Compiled Files
Add to Favorites >
Reformat Code L
Optimize Imports ~ ~X.0
Delete... 3
Open in >
Local History
Git
S Reload from Disk
-+ Compare With.. %D
Deployment I Excluded
Remove BOM Resource Root
— I Namespace Package
I Diagrams >

B Template Folder
©) Create Gist. 2

_images/join_slack.png
JOIN THE SLACK CHANNEL
Al4Finance Community

_images/logo_transparent_background.png

_images/pycharm_push_PR.png
add select region

Push tags:

Al

Push Commits

Edit all targets

_images/pycharm_status_bar.png
Python Interpreter
@ Python 3.8

/Add Interpreter...
Python 3.8 (base) P master @

_images/alg_compare.png
Value

States Q-value based Discrete only Single stock trading Target network, experience replay Simple and easy to use
Val Use two identical | network
States Q-value alue Discrete only Single stock trading s¢ two identical neural networ Reduce overestimations
based models to learn
Value Better differentiate actions,
States Q-value Discrete only Single stock trading Add a specialized dueling Q head . .
based improves the learning
State Actor-critic . Multiple stock trading, | Being deep Q-learning for continuous i ioh-di i
>) Q-value Continuous only P . (g g pQ) g Better at handling high-dimensional
action pair based portfolio allocation action spaces continuous action spaces
State Actor-critic Discrete and Advantage function, parallel gradients - i
: . Q-value . All use cases g .D gl Stable, cost-effective, faster and
action pair based continuous updating works better with large batch sizes
State Actor-critic Discrete and X L . Improve stability, less variance,
. . Q-value) All use cases Clipped surrogate objective function R .
action pair based continuous simply to implement
State Actor-critic . Multiple stock trading, izati .
K R Q-value Continuous only P . . s Entropy regularization, Improve stability
action pair based portfolio allocation exploration-exploitation trade-off
State Actor-critic Multiple stock trading, i - i
. . Q-value Continuous only P . . 8| Clipped double Q-Learning, delayed Improve DDPG performance
action pair based portfolio allocation | policy update, target policy smoothing.
State Actor-critic . Multiple stock trading, . .
K R Q-value Continuous only P . . s Handle multi-agent RL problem Improve stability and performance
action pair based portfolio allocation

_images/download_FinRL.png
B Al4Finance-Foundation / FinRL ' public

(3] Open with GitHub Desktop
finrl Merge branch 'master’ of https://¢

<>Code (© Issues 64 19 Pull requests 10) Discussions ® Actions] Projects 2 00 wiki @ Security |~ Insights
¥ master ~ ¥ 20 branches © 0 tags Go to file
b L= CEEEE Bl i E e @
HTTPS GitHub CLI
B github/workflows add tests to PR https://github. com/AI4Finance-Foundati (0
B docker Merge pull request #252 from roh Use Git or checkout with SVN using the web URL.
I figs Add files via upload
[}
]

tutorials Update DDPG_Hyperparameter._tt

_images/FinRL-Meta-Data-layer.png
Headlines
Lexion-based News
Sentiment

Transformer-based
embbeddings

Open-High-Low-Close-
Volume

Technical indicators,
Fundamental Indicators

Data Cleaning

Remove duplicates Handle missing data Merge different data tables

Data Accessing

} Data
|
| quency
| Binance . Fixer [
} 1 quarter
‘ CCXT 'changerates |
| 1 day
" Finnhub .Jnencylayer |
I
{ Tiingo .:unencyapi i il 10
' Alpha Vantage . Xignite i 1 second
Financial en Exchange 1 o
Modeling prep Rates ! MmiEEcEnd
1 US Stocks EiliFs ‘CN Securities | Cryptocurrency Forex

_images/FinRL_Tutorials.png
Optimization

Practical

Advance

Introduction

_images/finrl-meta_data_layer.png
Environment

i

Unified Data Processor

Data Data Feature

Accessing Cleaning Engineering

_images/result_NeurIPS.png
20000 { — DDPG
~—— Min-Var
— DJIA
18000
8 15000
©
>
2
g 14000
<]
a
12000
10000

2016101—011 2015:06-16 2016:11-29 2017~Il)5-16 2017~'10-27 ZOlB~h4~16 ZOlE~'l)9»28
Date

Figure 4: Portfolio value curves of our DDPG scheme, the min-variance portfolio allocation strategy,
and the Dow Jones Industrial Average. (Initial portfolio value $10, 000).

Table 1: Trading Performance.

DDPG (ours) | Min-Variance | DJIA
Initial Portfolio Value 10,000 10,000 10,000
Final Portfolio Value 19,791 14,369 15,428
Annualized Return 25.87% 15.93% 16.40%
Annualized Std. Error 13.62% 9.97% 11.70%
Sharpe Ratio 1.79 1.45 1.27

nav.xhtml

 Table of Contents

 		
 Welcome to FinRL Library!

 		
 Introduction

 		
 First Glance

 		
 Three-layer Architecture

 		
 1. Stock Market Environments

 		
 2. DRL Agents

 		
 ElegantRL: DRL library

 		
 3. Applications

 		
 Installation

 		
 MAC OS

 		
 Step 1: Install Anaconda

 		
 Step 2: Install Homebrew

 		
 Step 3: Install OpenAI

 		
 Step 4: Install FinRL

 		
 Step 5: Install box2d (if using box2d)

 		
 Step 6: Run FinRL

 		
 Ubuntu

 		
 Step 1: Install Anaconda

 		
 Step 2: Install OpenAI

 		
 Step 3: Install FinRL

 		
 Step 4: Install box2d (if using box2d)

 		
 Step 5: Run FinRL

 		
 Windows 10

 		
 Prepare for install

 		
 Step 1: Clone FinRL

 		
 Step 2: install dependencies

 		
 Step 3: Install box2d (if using box2d)

 		
 Step 4: test (If using YahooFinance in China, VPN is needed)

 		
 Tips for running error

 		
 Windows 10 (wsl install)

 		
 Step 1: Install Ubuntu on Windows 10

 		
 Step 2: Install Anaconda

 		
 Step 3: Install OpenAI

 		
 Step 4: Install FinRL

 		
 Step 5: Install box2d (if using box2d)

 		
 Step 6: Run FinRL

 		
 Quick Start

 		
 Background

 		
 Why FinRL-Meta?

 		
 Envrionments and Benchmarks

 		
 Metaverse for financial RL

 		
 Contribute to finance

 		
 Overview

 		
 1. Layered structure

 		
 2. DataOps Paradigm

 		
 3. Training-testing-trading pipeline:

 		
 4. Plug-and-play

 		
 Data Layer

 		
 Data Accessing

 		
 Data Cleaning

 		
 Feature Engineering

 		
 Environment Layer

 		
 Incorporating trading constraints to model market frictions

 		
 Multiprocessing training via vector environment

 		
 Benchmark

 		
 Performance Metrics

 		
 Tutorials in Jupyter Notebooks

 		
 Tutorials Guide

 		
 1-Introduction

 		
 2-Advance

 		
 3-Practical

 		
 4-Optimization

 		
 5-Others

 		
 1-Introduction

 		
 2-Advance

 		
 3-Practical

 		
 4-Optimization

 		
 5-Others

 		
 File Architecture

 		
 Development Guide

 		
 Step 1: Download Software

 		
 Step 2: Git Clone

 		
 Step 3: Create a Conda Environment

 		
 Step 4: Configure a PyCharm Project

 		
 Step 5: New a Branch

 		
 Step 6: Creating Commits and PRs/MRs

 		
 Step 7: Submit PRs/MRs

 		
 Step 8: Merge “staging” to “master”

 		
 Contributing Guidelines

 		
 Guiding Principles

 		
 Accepting PRs

 		
 PR Guidelines

 		
 Others

 		
 Publications

 		
 External Sources

 		
 Proof-of-concept

 		
 DRL Algorithms/Libraries

 		
 Theory

 		
 Trading Strategies

 		
 Financial Big Data

 		
