
FinRL Documentation
Release 0.3.1

FinRL

Dec 18, 2022

CONTENTS

1 Introduction 3

2 First Glance 5

3 Three-layer Architecture 7

4 Installation 13

5 Quick Start 17

6 Background 19

7 Overview 21

8 Data Layer 25

9 Environment Layer 29

10 Benchmark 31

11 Tutorials Guide 33

12 File Architecture 75

13 Development setup with PyCharm 77

14 Publications 83

15 External Sources 85

16 FAQ 89

i

ii

FinRL Documentation, Release 0.3.1

Disclaimer: Nothing herein is financial advice, and NOT a recommendation to trade real money. Please use
common sense and always first consult a professional before trading or investing.
AI4Finance community provides this demonstrative and educational resource, in order to efficiently automate trading.
FinRL is the first open source framework for financial reinforcement learning.

Reinforcement learning (RL) trains an agent to solve tasks by trial and error, while DRL uses deep neural networks as
function approximators. DRL balances exploration (of uncharted territory) and exploitation (of current knowledge),
and has been recognized as a competitive edge for automated trading. DRL framework is powerful in solving dynamic
decision making problems by learning through interactions with an unknown environment, thus exhibiting two major
advantages: portfolio scalability and market model independence. Automated trading is essentially making dynamic
decisions, namely to decide where to trade, at what price, and what quantity, over a highly stochastic and complex
stock market. Taking many complex financial factors into account, DRL trading agents build a multi-factor model and
provide algorithmic trading strategies, which are difficult for human traders.

FinRL provides a framework that supports various markets, SOTA DRL algorithms, benchmarks of many quant finance
tasks, live trading, etc.

Join or discuss FinRL with us: AI4Finance mailing list.

Feel free to leave us feedback: report bugs using Github issues or discuss FinRL development in the Slack Channel.

CONTENTS 1

https://github.com/AI4Finance-Foundation/FinRL
https://github.com/AI4Finance-Foundation/FinRL
https://groups.google.com/u/1/g/ai4finance
https://github.com/AI4Finance-LLC/FinRL-Library/issues
https://join.slack.com/t/ai4financeworkspace/shared_invite/zt-jyaottie-hHqU6TdvuhMHHAMXaLw_~w

FinRL Documentation, Release 0.3.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Table of Contents

• Introduction

Design Principles
• Plug-and-Play (PnP): Modularity; Handle different markets (say T0 vs. T+1)

• Completeness and universal: Multiple markets; Various data sources (APIs, Excel, etc); User-friendly variables.

• Avoid hard-coded parameters

• Closing the sim-real gap using the “training-testing-trading” pipeline: simulation for training and connecting
real-time APIs for testing/trading.

• Efficient data sampling: accelerate the data sampling process is the key to DRL training! From the ElegantRL
project. We know that multi-processing is powerful to reduce the training time (scheduling between CPU +
GPU).

• ransparency: a virtual env that is invisible to the upper layer

• Flexibility and extensibility: Inheritance might be helpful here

Contributions
• FinRL is an open source library specifically designed and implemented for quantitative finance. Trading envi-

ronments incorporating market frictions are used and provided.

• Trading tasks accompanied by hands-on tutorials with built-in DRL agents are available in a beginner-friendly
and reproducible fashion using Jupyter notebook. Customization of trading time steps is feasible.

• FinRL has good scalability, with fine-tuned state-of-the-art DRL algorithms. Adjusting the implementations to
the rapid changing stock market is well supported.

• Typical use cases are selected to establish benchmarks for the quantitative finance community. Standard back-
testing and evaluation metrics are also provided for easy and effective performance evaluation.

With FinRL library, the implementation of powerful DRL trading strategies becomes more accessible, efficient and
delightful.

3

FinRL Documentation, Release 0.3.1

4 Chapter 1. Introduction

CHAPTER

TWO

FIRST GLANCE

To quickly understand what is FinRL and how it works, you can go through the notebook
FinRL_StockTrading_NeurIPS_2018.ipynb

This is how we use Deep Reinforcement Learning for Stock Trading from scratch.

Tip: Run the code step by step at Google Colab.

The notebook and the following result is based on our paper Practical deep reinforcement learning approach for stock
trading Xiong, Zhuoran, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar Walid. “Practical deep reinforce-
ment learning approach for stock trading.” arXiv preprint arXiv:1811.07522 (2018).

5

https://github.com/AI4Finance-Foundation/FinRL/blob/master/tutorials/1-Introduction/FinRL_StockTrading_NeurIPS_2018.ipynb
https://colab.research.google.com/github/AI4Finance-Foundation/FinRL/blob/master/FinRL_StockTrading_NeurIPS_2018.ipynb

FinRL Documentation, Release 0.3.1

6 Chapter 2. First Glance

CHAPTER

THREE

THREE-LAYER ARCHITECTURE

After the first glance of how to establish our task on stock trading using DRL, know we are introducing the most central
idea of FinRL.

FinRL library consists of three layers: market environments (FinRL-Meta), DRL agents and applications. The
lower layer provides APIs for the upper layer, making the lower layer transparent to the upper layer. The agent layer
interacts with the environment layer in an exploration-exploitation manner, whether to repeat prior working-well deci-
sions or to make new actions hoping to get greater cumulative rewards.

Our construction has following advantages:

Modularity: Each layer includes several modules and each module defines a separate function. One can select certain
modules from a layer to implement his/her stock trading task. Furthermore, updating existing modules is possible.

Simplicity, Applicability and Extendibility: Specifically designed for automated stock trading, FinRL presents DRL
algorithms as modules. In this way, FinRL is made accessible yet not demanding. FinRL provides three trading tasks
as use cases that can be easily reproduced. Each layer includes reserved interfaces that allow users to develop new
modules.

Better Market Environment Modeling: We build a trading simulator that replicates live stock markets and provides
backtesting support that incorporates important market frictions such as transaction cost, market liquidity and the
investor’s degree of risk-aversion. All of those are crucial among key determinants of net returns.

A high level view of how FinRL construct the problem in DRL:

7

FinRL Documentation, Release 0.3.1

Please refer to the following pages for more specific explanation:

3.1 1. Stock Market Environments

Considering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a
Markov Decision Process (MDP) problem. FinRL-Meta first preprocesses the market data, and then builds stock market
environments. The environemnt observes the change of stock price and multiple features, and the agent takes an action
and receives the reward from the environment, and finally the agent adjusts its strategy accordingly. By interacting with
the environment, the smart agent will derive a trading strategy to maximize the long-term accumulated rewards (also
named as Q-value).

Our trading environments, based on OpenAI Gym, simulate the markets with real market data, using time-driven
simulation. FinRL library strives to provide trading environments constructed by datasets across many stock exchanges.

In the Tutorials and Examples section, we will illustrate the detailed MDP formulation with the components of the
reinforcement learning environment.

The application of DRL in finance is different from that in other fields, such as playing chess and card games; the latter
inherently have clearly defined rules for environments. Various finance markets require different DRL algorithms to get
the most appropriate automated trading agent. Realizing that setting up a training environment is time-consuming and
laborious work, FinRL provides market environments based on representative listings, including NASDAQ-100, DJIA,
S&P 500, SSE 50, CSI 300, and HSI, plus a user-defined environment. Thus, this library frees users from tedious and
time-consuming data pre-processing workload. We know that users may want to train trading agents on their own data
sets. FinRL library provides convenient support to user-imported data and allows users to adjust the granularity of time
steps. We specify the format of the data. According to our data format instructions, users only need to pre-process their
data sets.

8 Chapter 3. Three-layer Architecture

FinRL Documentation, Release 0.3.1

We follow the DataOps paradigm in the data layer.

• We establish a standard pipeline for financial data engineering in RL, ensuring data of different formats from
different sources can be incorporated in a unified framework.

• We automate this pipeline with a data processor, which can access data, clean data, and extract features from
various data sources with high quality and efficiency. Our data layer provides agility to model deployment.

• We employ a training-testing-trading pipeline. The DRL agent first learns from the training environment
and is then validated in the validation environment for further adjustment. Then the validated agent is tested
in historical datasets. Finally, the tested agent will be deployed in paper trading or live trading markets. First,
this pipeline solves the information leakage problem because the trading data are never leaked when adjusting
agents. Second, a unified pipeline allows fair comparisons among different algorithms and strategies.

For data processing and building environment for DRL in finance, AI4Finance has maintained another project: FinRL-
Meta.

3.2 2. DRL Agents

FinRL contains fine-tuned standard DRL algorithms in ElegantRL, Stable Baseline 3, and RLlib. ElegantRL is a
scalable and elastic DRL library that maintained by AI4Finance, with faster and more stable performance than Stable
Baseline 3 and RLlib. In the Three-Layer Architecture section, there will be detailed explanation about how ElegantRL
accomplish its role in FinRL perfectly. If interested, please refer to ElegantRL’s GitHub page or documentation.

With those three powerful DRL libraries, FinRL provides the following algorithms for users:

3.2. 2. DRL Agents 9

https://github.com/AI4Finance-Foundation/FinRL-Meta
https://github.com/AI4Finance-Foundation/FinRL-Meta
https://github.com/AI4Finance-Foundation/ElegantRL
https://elegantrl.readthedocs.io

FinRL Documentation, Release 0.3.1

start/image/alg_compare.png

As mentioned in the introduction, FinRL’s DRL agents are built by fine-tuned standard DRL algorithms depending on
three famous DRL library: ElegantRL, Stable Baseline 3, and RLlib.

The supported algorithms include: DQN, DDPG, Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users
to design their own DRL algorithms by adapting these DRL algorithms, e.g., Adaptive DDPG, or employing ensemble
methods. The comparison of DRL algorithms is shown in the table bellow:

Users are able to choose their favorite DRL agents for training. Different DRL agents might have different performance
in various tasks.

3.2.1 ElegantRL: DRL library

One sentence summary of reinforcement learning (RL): in RL, an agent learns by continuously interacting with an
unknown environment, in a trial-and-error manner, making sequential decisions under uncertainty and achieving a
balance between exploration (new territory) and exploitation (using knowledge learned from experiences).

Deep reinforcement learning (DRL) has great potential to solve real-world problems that are challenging to humans,
such as gaming, natural language processing (NLP), self-driving cars, and financial trading. Starting from the success

10 Chapter 3. Three-layer Architecture

https://github.com/AI4Finance-Foundation/ElegantRL

FinRL Documentation, Release 0.3.1

of AlphaGo, various DRL algorithms and applications are emerging in a disruptive manner. The ElegantRL library
enables researchers and practitioners to pipeline the disruptive “design, development and deployment” of DRL tech-
nology.

The library to be presented is featured with “elegant” in the following aspects:

• Lightweight: core codes have less than 1,000 lines, e.g., helloworld.

• Efficient: the performance is comparable with Ray RLlib.

• Stable: more stable than Stable Baseline 3.

ElegantRL supports state-of-the-art DRL algorithms, including discrete and continuous ones, and provides user-
friendly tutorials in Jupyter notebooks. The ElegantRL implements DRL algorithms under the Actor-Critic framework,
where an Agent (a.k.a, a DRL algorithm) consists of an Actor network and a Critic network. Due to the completeness
and simplicity of code structure, users are able to easily customize their own agents.

Please refer to ElegantRL’s GitHub page or documentation for more details.

3.3 3. Applications

3.3. 3. Applications 11

https://github.com/AI4Finance-Foundation/ElegantRL
https://elegantrl.readthedocs.io

FinRL Documentation, Release 0.3.1

12 Chapter 3. Three-layer Architecture

CHAPTER

FOUR

INSTALLATION

4.1 MAC OS

4.1.1 Step 1: Install Anaconda

-Download Anaconda Installer, Anaconda has everything you need for Python programming.

-Follow Anaconda’s instruction: macOS graphical install, to install the newest version of Anaconda.

-Open your terminal and type: ‘which python’, it should show:

/Users/your_user_name/opt/anaconda3/bin/python

It means that your Python interpreter path has been pinned to Anaconda’s python version. If it shows something like
this:

/Users/your_user_name/opt/anaconda3/bin/python

It means that you still use the default python path, you either fix it and pin it to the anaconda path (try this blog), or you
can use Anaconda Navigator to open a terminal manually.

4.1.2 Step 2: Install Homebrew

-Open a terminal and make sure that you have installed Anaconda.

-Install Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
→˓install.sh)"

4.1.3 Step 3: Install OpenAI

Installation of system packages on Mac requires Homebrew. With Homebrew installed, run the following in your
terminal:

brew install cmake openmpi

13

https://www.anaconda.com/products/individual#macos
https://docs.anaconda.com/anaconda/install/mac-os/
https://towardsdatascience.com/how-to-successfully-install-anaconda-on-a-mac-and-actually-get-it-to-work-53ce18025f97

FinRL Documentation, Release 0.3.1

4.1.4 Step 4: Install FinRL

Since we are still actively updating the FinRL repository, please install the unstable development version of FinRL
using pip:

pip install git+https://github.com/AI4Finance-Foundation/FinRL.git

4.1.5 Step 5: Run FinRL

Download the FinRL repository either use terminal:

git clone https://github.com/AI4Finance-Foundation/FinRL.git

or download it manually

Open Jupyter Notebook through Anaconda Navigator and locate one of the stock trading notebook in FinRL/tutorials
you just downloaded. You should be able to run it.

4.2 Ubuntu

4.2.1 Step 1: Install Anaconda

Please follow the steps in this blog

4.2.2 Step 2: Install OpenAI

Open an ubuntu terminal and type:

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev␣
→˓libgl1-mesa-glx

14 Chapter 4. Installation

https://linuxize.com/post/how-to-install-anaconda-on-ubuntu-18-04/

FinRL Documentation, Release 0.3.1

4.2.3 Step 3: Install FinRL

Since we are still actively updating the FinRL repository, please install the unstable development version of FinRL
using pip:

pip install git+https://github.com/AI4Finance-Foundation/FinRL.git

4.2.4 Step 4: Run FinRL

Download the FinRL repository in terminal:

git clone https://github.com/AI4Finance-Foundation/FinRL.git

Open Jupyter Notebook by typing ‘jupyter notebook’ in your ubuntu terminal.

Locate one of the stock trading notebook in FinRL/tutorials you just downloaded. You should be able to run it.

4.3 Windows 10

4.3.1 Prepare for install

1. VPN is needed if using YahooFinance in china (pyfolio, elegantRL pip dependencies need pull code, YahooFi-
nance has stopped the service in china). Othewise, please ignore it.

2. python version >=3.7

3. pip remove zipline, if your system has installed zipline, zipline has conflicts with the FinRL.

4.3.2 Step1: Clone FinRL

git clone https://github.com/AI4Finance-Foundation/FinRL.git

4.3.3 Step2: install dependencies

cd FinRL
pip install .

4.3.4 Step3: test (If using YahooFinance in China, VPN is needed)

python FinRL_StockTrading_NeurIPS_2018.py

4.3. Windows 10 15

FinRL Documentation, Release 0.3.1

4.3.5 Tips for running error

If the following outputs appear, take it easy, since installation is still successful.

1. UserWarning: Module “zipline.assets” not found; multipliers will not be applied to position notionals. Module
“zipline.assets” not found; multipliers will not be applied’

If following outputs appear, please ensure that VPN helps to access the YahooFinance

1. Failed download: xxxx: No data found for this date range, the stock may be delisted, or the value is missing.

4.4 Windows 10 (wsl install)

4.4.1 Step 1: Install Ubuntu on Windows 10

Please check this video for detailed steps:

4.4.2 Step 2: Install Anaconda

Please follow the steps in this blog

4.4.3 Step 3: Install OpenAI

Open an ubuntu terminal and type:

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev␣
→˓libgl1-mesa-glx

4.4.4 Step 4: Install FinRL

Since we are still actively updating the FinRL repository, please install the unstable development version of FinRL
using pip:

pip install git+https://github.com/AI4Finance-Foundation/FinRL.git

4.4.5 Step 5: Run FinRL

Download the FinRL repository in terminal:

git clone https://github.com/AI4Finance-Foundation/FinRL.git

Open Jupyter Notebook by typing ‘jupyter notebook’ in your ubuntu terminal. Please see jupyter notebook

Locate one of the stock trading notebook in FinRL/tutorials you just downloaded. You should be able to run it.

16 Chapter 4. Installation

https://linuxize.com/post/how-to-install-anaconda-on-ubuntu-18-04/
https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

CHAPTER

FIVE

QUICK START

Open main.py

1 import os

from typing import List from argparse import ArgumentParser from finrl import config from finrl.config_tickers import
DOW_30_TICKER from finrl.config import (

DATA_SAVE_DIR, TRAINED_MODEL_DIR, TENSORBOARD_LOG_DIR, RESULTS_DIR, INDI-
CATORS, TRAIN_START_DATE, TRAIN_END_DATE, TEST_START_DATE, TEST_END_DATE,
TRADE_START_DATE, TRADE_END_DATE, ERL_PARAMS, RLlib_PARAMS, SAC_PARAMS,
ALPACA_API_KEY, ALPACA_API_SECRET, ALPACA_API_BASE_URL,

)

construct environment from finrl.finrl_meta.env_stock_trading.env_stocktrading_np import StockTradingEnv

def build_parser():
parser = ArgumentParser() parser.add_argument(

“–mode”, dest=”mode”, help=”start mode, train, download_data” ” backtest”, metavar=”MODE”,
default=”train”,

) return parser

“./” will be added in front of each directory def check_and_make_directories(directories: List[str]):

for directory in directories:
if not os.path.exists(“./” + directory):

os.makedirs(“./” + directory)

def main():
parser = build_parser() options = parser.parse_args() check_and_make_directories([DATA_SAVE_DIR,
TRAINED_MODEL_DIR, TENSORBOARD_LOG_DIR, RESULTS_DIR])

if options.mode == “train”:
from finrl import train

env = StockTradingEnv

demo for elegantrl kwargs = {} # in current finrl_meta, with respect yahoofinance, kwargs is {}. For other
data sources, such as joinquant, kwargs is not empty train(

start_date=TRAIN_START_DATE, end_date=TRAIN_END_DATE,
ticker_list=DOW_30_TICKER, data_source=”yahoofinance”, time_interval=”1D”, tech-
nical_indicator_list=INDICATORS, drl_lib=”elegantrl”, env=env, model_name=”ppo”,
cwd=”./test_ppo”, erl_params=ERL_PARAMS, break_step=1e5, kwargs=kwargs,

)

17

FinRL Documentation, Release 0.3.1

elif options.mode == “test”:
from finrl import test env = StockTradingEnv

demo for elegantrl kwargs = {} # in current finrl_meta, with respect yahoofinance, kwargs is {}. For other
data sources, such as joinquant, kwargs is not empty

account_value_erl = test(
start_date=TEST_START_DATE, end_date=TEST_END_DATE, ticker_list=DOW_30_TICKER,
data_source=”yahoofinance”, time_interval=”1D”, technical_indicator_list=INDICATORS,
drl_lib=”elegantrl”, env=env, model_name=”ppo”, cwd=”./test_ppo”, net_dimension=512,
kwargs=kwargs,

)

elif options.mode == “trade”:
from finrl import trade env = StockTradingEnv kwargs = {} trade(

start_date=TRADE_START_DATE, end_date=TRADE_END_DATE,
ticker_list=DOW_30_TICKER, data_source=”yahoofinance”, time_interval=”1D”, tech-
nical_indicator_list=INDICATORS, drl_lib=”elegantrl”, env=env, model_name=”ppo”,
API_KEY=ALPACA_API_KEY, API_SECRET=ALPACA_API_SECRET,
API_BASE_URL=ALPACA_API_BASE_URL, trade_mode=’backtesting’, if_vix=True,
kwargs=kwargs,

)

else:
raise ValueError(“Wrong mode.”)

Users can input the following command in terminal # python main.py –mode=train # python main.py –mode=test
python main.py –mode=trade if __name__ == “__main__”:

main()

Run the library:

python main.py --mode=train # if train. Use DOW_30_TICKER by default.
python main.py --mode=test # if test. Use DOW_30_TICKER by default.
python main.py --mode=trade # if trade. Users should input your alpaca parameters in␣
→˓config.py

Choices for --mode: start mode, train, download_data, backtest

18 Chapter 5. Quick Start

CHAPTER

SIX

BACKGROUND

6.1 Dataset: Financial Big Data

FinRL-Meta provides multiple datasets for financial reinforcement learning. Stepping into the era of internet, the
speed of information exchange has an exponential increment. Along with that, the amount of data also explodes into
an incredible number, which generates the new concept “big data”.

As its data refreshing minute-to-second, finance is one of the most typical domains that big data imbeded in. Financial
big data, as a new popular field, gets more and more attention by economists, data scientists, and computer scientists.

In academia, scholors use financial big data to explore more complex and precise understanding of market and eco-
nomics. While industries use financial big data to refine their analytical strategies and strengthen their prediction
models. Realizing the potential of this solid background, AI4Finance community started FinRL-Meta to serve for
various needs by researchers and industries.

For datasets, FinRL-Meta has standardized flow of data extraction and cleaning for more than 30 different data sources.
The purpose of providing the data pulling tool instead of a fixed dataset is better corresponding to the fast updating
property of financial market. The dynamic construction can help users grip data according to their own requirement.

6.2 Benchmark

FinRL-Meta provides multiple benchmarks for financial reinforcement learning.

FinRL-Meta benchmarks work in famous papers and projects, covering stock trading, cyptocurrency trading, portfolio
allocation, hyper-parameter tuning, etc. Along with that, there are Jupyter/Python demos that help users to test or
design new strategies.

19

FinRL Documentation, Release 0.3.1

6.3 DataOps

DataOps applies the ideas of lean development and DevOps to the data analytics field. DataOps practices have been
developed in companies and organizations to improve the quality of and efficiency of data analytics. These implemen-
tations consolidate various data sources, unify and automate the pipeline of data analytics, including data accessing,
cleaning, analysis, and visualization.

However, the DataOps methodology has not been applied to financial reinforcement learning researches. Most re-
searchers access data, clean data, and extract technical indicators (features) in a case-by-case manner, which involves
heavy manual work and may not guarantee the data quality.

To deal with financial big data (usually unstructured), we follow the DataOps paradigm and implement an automatic
pipeline in the following figure: task planning, data processing, training-testing-trading, and monitoring agents’ per-
formance. Through this pipeline, we continuously produce DRL benchmarks on dynamic market datasets.

We follow the DataOps paradigm in the data layer.

1. we establish a standard pipeline for financial data engineering in RL, ensuring data of different formats from
different sources can be incorporated in a unified framework.

2. we automate this pipeline with a data processor, which can access data, clean data, and extract features from
various data sources with high quality and efficiency. Our data layer provides agility to model deployment.

3. we employ a training-testing-trading pipeline. The DRL agent first learns from the training environment and is
then validated in the validation environment for further adjustment. Then the validated agent is tested in historical
datasets. Finally, the tested agent will be deployed in paper trading or live trading markets. First, this pipeline
solves the information leakage problem because the trading data are never leaked when adjusting agents. Second,
a unified pipeline allows fair comparisons among different algorithms and strategies.

20 Chapter 6. Background

CHAPTER

SEVEN

OVERVIEW

Following the de facto standard of OpenAI Gym, we build a universe of market environments for data-driven financial
reinforcement learning, namely, FinRL-Meta. We keep the following design principles.

7.1 1. Supported trading tasks:

We have supported and achieved satisfactory trading performance for trading tasks such as stock trading, cryptocurrency
trading, and portfolio allocation. Derivatives such as futures and forex are also supported. Besides, we have supported
multi-agent simulation and execution optimizing tasks by reproducing the experiment in other published papers.

7.2 2. Training-testing-trading pipeline:

We employ a training-testing-trading pipeline that the DRL approach follows a standard end-to-end pipeline. The
DRL agent is first trained in a training environment and then fined-tuned (adjusting hyperparameters) in a validation
environment. Then the validated agent is tested on historical datasets (backtesting). Finally, the tested agent will be
de- ployed in paper trading or live trading markets.

This pipeline solves the information leakage problem because the trading data are never leaked when training/tuning
the agents.

Such a unified pipeline allows fair comparisons among different algorithms and strategies.

21

FinRL Documentation, Release 0.3.1

7.3 3. DataOps for data-driven financial reinforcement leanring

We follow the DataOps paradigm in the data layer, as shown in the figure above. First, we establish a standard pipeline
for financial data engineering, ensuring data of different formats from different sources can be incorporated in a unified
RL framework. Second, we automate this pipeline with a data processor, which can access data, clean data and extract
features from various data sources with high quality and efficiency. Our data layer provides agility to model deployment.

7.4 4. Layered structure and extensibility

We adopt a layered structure for RL in finance, which consists of three layers: data layer, environment layer, and agent
layer. Each layer executes its functions and is relatively independent. Meanwhile, layers interact through end-to-end
interfaces to implement the complete workflow of algorithm trading, achieving high extensibility. For updates and
substitutes inside the layer, this structure minimizes the impact on the whole system. Moreover, user-defined functions
are easy to extend, and algorithms can be updated fast to keep high performance.

22 Chapter 7. Overview

FinRL Documentation, Release 0.3.1

7.5 5. Plug-and-play

In the development pipeline, we separate market environments from the data layer and the agent layer. Any DRL agent
can be directly plugged into our environments, then will be trained and tested. Different agents can run on the same
benchmark environment for fair comparisons. Several popular DRL libraries are supported, including ElegantRL,
RLlib, and SB3.

7.5. 5. Plug-and-play 23

FinRL Documentation, Release 0.3.1

24 Chapter 7. Overview

CHAPTER

EIGHT

DATA LAYER

In the data layer, we use a unified data processor to access data, clean data, and extract features.

8.1 Data Accessing

We connect data APIs of different platforms and unify them using a FinRL-Meta data processor. Users can access data
from various sources given the start date, end date, stock list, time interval, and kwargs.

25

FinRL Documentation, Release 0.3.1

8.2 Data Cleaning

Raw data retrieved from different data sources are usually of various formats and have erroneous or NaN data (missing
data) to different extents, making data cleaning highly time-consuming. In FinRL-Meta, we automate the data cleaning
process.

The cleaning processes of NaN data are usually different for various time frequencies. For Low-frequency data, except
few stocks with extremely low liquidity, the few NaN values usually mean suspension during that time interval. While
for high-frequency data, NaN values are pervasive, which usually means no transaction during that time interval. To
reduce the simulation-to-reality gap considering of data efficiency, we provide different solutions for these two cases.

In the low-frequency case, we directly delete the rows with NaN values, reflecting suspension in simulated trading
environments. However, it is not suitable to directly delete rows with NaN values in high-frequency cases.

In our test of downloading 1-min OHLCV data of DJIA 30 companies from Alpaca during 2021–01–01~2021–05–31,
there were 39736 rows for the raw data. However, after dropping rows with NaN values, only 3361 rows are left.

The low data efficiency of the dropping method is unacceptable. Instead, we take an improved forward filling method.
We fill the open, high, low, close columns with the last valid value of close price and the volume column with 0, which
is a standard method in practice.

Although this filling method sacrifices the authenticity of the simulated environments, it is acceptable compared to
significantly improved data efficiency, especially under tickers with high liquidity. Moreover, this filling method can
be further improved using bid, ask prices to reduce the simulation-to-reality gap.

26 Chapter 8. Data Layer

FinRL Documentation, Release 0.3.1

8.3 Feature Engineering

Feature engineering is the last part of the data layer. We automate the calculation of technical indicators by connect-
ing the Stockstats or TAlib library in our data processor. Common technical indicators including Moving Average
Convergence Divergence (MACD), Relative Strength Index (RSI), Average Directional Index (ADX), and Commodity
Channel Index (CCI), and so on, are supported. Users can also quickly add indicators from other libraries, or add the
user-defined features directly.

Users can add their features by two ways: 1) Write user-defined feature extraction functions directly. The returned
features will be added to a feature array. 2) Store the features in a file, and move it to a specified folder. Then, these
features will be obtained by reading from the specified file.

8.3. Feature Engineering 27

FinRL Documentation, Release 0.3.1

28 Chapter 8. Data Layer

CHAPTER

NINE

ENVIRONMENT LAYER

FinRL-Meta follows the OpenAI gym-style [8] to create market environments using the cleaned data from the data layer.
It provides hundreds of environments with a common interface. Users can build their environments based on FinRL-
Meta environments easily, share their results and compare the strategies’ performance. We will add more environments
for convenience in the future.

29

FinRL Documentation, Release 0.3.1

30 Chapter 9. Environment Layer

CHAPTER

TEN

BENCHMARK

10.1 Performance Metrics

FinRL-Meta provides the following unified metrics to measure the trading performance:

• Cumulative return: 𝑅 = 𝑉−𝑉0

𝑉0
, where V is final portfolio value, and 𝑉0 is original capital.

• Annualized return: 𝑟 = (1 + 𝑅)
365
𝑡 − 1, where t is the number of trading days.

• Annualized volatility: 𝜎𝑎 =
√︁∑︀𝑛

𝑖=1 (𝑟𝑖−𝑟)2

𝑛−1 , where 𝑟𝑖 is the annualized return in year i, 𝑟 is the average annu-
alized return, and n is the number of years.

• Sharpe ratio: 𝑆 =
𝑟−𝑟𝑓
𝜎𝑎

, where 𝑟𝑓 is the risk-free rate.

• Max. drawdown The maximal percentage loss in portfolio value.

10.2 Experiment Settings

31

FinRL Documentation, Release 0.3.1

32 Chapter 10. Benchmark

CHAPTER

ELEVEN

TUTORIALS GUIDE

Welcome to FinRL’s tutorial! In this section, you can walk through the tutorial notebooks we prepared. If you are new
to FinRL, we would suggest you the following sequence:

Mission: provide user-friendly demos in notebook or python.

Outline

1-Introduction: basic demos for beginners.

2-Advance: advanced demos, e.g., ensemble stock trading.

3-Practical: paper trading and live trading.

4-Optimization: hyperparameter tuning.

5-Others: other demos.

33

https://github.com/AI4Finance-Foundation/FinRL/tree/master/tutorials

FinRL Documentation, Release 0.3.1

11.1 1-Introduction

11.1.1 Single Stock Trading

Deep Reinforcement Learning for Stock Trading from Scratch: Single Stock Trading

Tip: Run the code step by step at Google Colab.

Step 1: Preparation

Step 1.1: Overview
As deep reinforcement learning (DRL) has been recognized as an effective approach in quantitative finance, getting
hands-on experiences is attractive to beginners. However, to train a practical DRL trading agent that decides where to
trade, at what price, and what quantity involves error-prone and arduous development and debugging.

We introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop
their own stock trading strategies. Along with easily-reproducible tutorials, FinRL library allows users to streamline
their own developments and to compare with existing schemes easily.

FinRL is a beginner-friendly library with fine-tuned standard DRL algorithms. It has been developed under three
primary principles:

• Completeness: Our library shall cover components of the DRL framework completely, which is a fundamental
requirement;

• Hands-on tutorials: We aim for a library that is friendly to beginners. Tutorials with detailed walk-through will
help users to explore the functionalities of our library;

• Reproducibility: Our library shall guarantee reproducibility to ensure the transparency and also provide users
with confidence in what they have done

This article is focusing on one of the use cases in our paper: Single Stock Trading. We use one Jupyter notebook to
include all the necessary steps.

We use Apple Inc. stock: AAPL as an example throughout this article, because it is one of the most popular stocks.

34 Chapter 11. Tutorials Guide

https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/examples/old/DRL_single_stock_trading.ipynb

FinRL Documentation, Release 0.3.1

Step 1.2: Problem Definition
This problem is to design an automated trading solution for single stock trading. We model the stock trading process
as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.

The components of the reinforcement learning environment are:

• Action: The action space describes the allowed actions that the agent interacts with the environment. Normally,
a A includes three actions: a {1, 0, 1}, where 1, 0, 1 represent selling, holding, and buying one stock. Also, an
action can be carried upon multiple shares. We use an action space {k, . . . , 1, 0, 1, . . . , k}, where k denotes the
number of shares. For example, “Buy 10 shares of AAPL” or “Sell 10 shares of AAPL” are 10 or 10, respectively

• Reward function: r(s, a, s) is the incentive mechanism for an agent to learn a better action. The change of the
portfolio value when action a is taken at state s and arriving at new state s’, i.e., r(s, a, s) = v v, where v and v
represent the portfolio values at state s and s, respectively

• State: The state space describes the observations that the agent receives from the environment. Just as a human
trader needs to analyze various information before executing a trade, so our trading agent observes many different
features to better learn in an interactive environment.

• Environment: single stock trading for AAPL

The data of the single stock that we will be using for this case study is obtained from Yahoo Finance API. The data
contains Open-High-Low-Close price and volume.

Step 1.3: Python Package Installation
As a first step we check if the additional packages needed are present, if not install them.

• Yahoo Finance API

• pandas

• matplotlib

• stockstats

• OpenAI gym

11.1. 1-Introduction 35

FinRL Documentation, Release 0.3.1

• stable-baselines

• tensorflow

1 import pkg_resources
2 import pip
3 installedPackages = {pkg.key for pkg in pkg_resources.working_set}
4 required = {'yfinance', 'pandas', 'matplotlib', 'stockstats','stable-baselines','gym',

→˓'tensorflow'}
5 missing = required - installedPackages
6 if missing:
7 !pip install yfinance
8 !pip install pandas
9 !pip install matplotlib

10 !pip install stockstats
11 !pip install gym
12 !pip install stable-baselines[mpi]
13 !pip install tensorflow==1.15.4

Step 1.4: Import packages

1 import yfinance as yf
2 from stockstats import StockDataFrame as Sdf
3

4 import pandas as pd
5 import matplotlib.pyplot as plt
6

7 import gym
8 from stable_baselines import PPO2, DDPG, A2C, ACKTR, TD3
9 from stable_baselines import DDPG

10 from stable_baselines import A2C
11 from stable_baselines import SAC
12 from stable_baselines.common.vec_env import DummyVecEnv
13 from stable_baselines.common.policies import MlpPolicy

Step 2: Download Data

Yahoo Finance is a website that provides stock data, financial news, financial reports, etc. All the data provided by
Yahoo Finance is free.

This Medium blog explains how to use Yahoo Finance API to extract data directly in Python.

• FinRL uses a class YahooDownloader to fetch data from Yahoo Finance API

• Call Limit: Using the Public API (without authentication), you are limited to 2,000 requests per hour per IP (or
up to a total of 48,000 requests a day).

We can either download the stock data like open-high-low-close price manually by entering a stock ticker symbol like
AAPL into the website search bar, or we just use Yahoo Finance API to extract data automatically.

FinRL uses a YahooDownloader class to extract data.

class YahooDownloader:
"""
Provides methods for retrieving daily stock data from Yahoo Finance API

(continues on next page)

36 Chapter 11. Tutorials Guide

https://finance.yahoo.com/
https://towardsdatascience.com/free-stock-data-for-python-using-yahoo-finance-api-9dafd96cad2e
https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/marketdata/yahoodownloader.py

FinRL Documentation, Release 0.3.1

(continued from previous page)

Attributes

start_date : str
start date of the data (modified from config.py)

end_date : str
end date of the data (modified from config.py)

ticker_list : list
a list of stock tickers (modified from config.py)

Methods

fetch_data()
Fetches data from yahoo API

"""

Download and save the data in a pandas DataFrame:

1 # Download and save the data in a pandas DataFrame:
2 df = YahooDownloader(start_date = '2009-01-01',
3 end_date = '2020-09-30',
4 ticker_list = config_tickers.DOW_30_TICKER).fetch_data()
5

6 print(df.sort_values(['date','tic'],ignore_index=True).head(30))

image/single_1.png

Step 3: Preprocess Data

Data preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing
data and do feature engineering in order to convert the data into a model-ready state.

• FinRL uses a FeatureEngineer class to preprocess the data

• Add technical indicators. In practical trading, various information needs to be taken into account, for example
the historical stock prices, current holding shares, technical indicators, etc.

Calculate technical indicators
In practical trading, various information needs to be taken into account, for example the historical stock prices, current
holding shares, technical indicators, etc.

• FinRL uses stockstats to calcualte technical indicators such as Moving Average Convergence Divergence
(MACD), Relative Strength Index (RSI), Average Directional Index (ADX), Commodity Channel Index (CCI)
and other various indicators and stats.

• stockstats: supplies a wrapper StockDataFrame based on the pandas.DataFrame with inline stock statis-
tics/indicators support.

• we store the stockstats technical indicator column names in config.py

• config.INDICATORS = [‘macd’, ‘rsi_30’, ‘cci_30’, ‘dx_30’]

11.1. 1-Introduction 37

FinRL Documentation, Release 0.3.1

• User can add more technical indicators, check https://github.com/jealous/stockstats for different names

FinRL uses a FeatureEngineer class to preprocess data.

class FeatureEngineer:
"""
Provides methods for preprocessing the stock price data

Attributes

df: DataFrame
data downloaded from Yahoo API

feature_number : int
number of features we used

use_technical_indicator : boolean
we technical indicator or not

use_turbulence : boolean
use turbulence index or not

Methods

preprocess_data()
main method to do the feature engineering

"""

Perform Feature Engineering:

1 # Perform Feature Engineering:
2 df = FeatureEngineer(df.copy(),
3 use_technical_indicator=True,
4 tech_indicator_list = config.INDICATORS,
5 use_turbulence=True,
6 user_defined_feature = False).preprocess_data()

Step 4: Build Environment

Considering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a
Markov Decision Process (MDP) problem. The training process involves observing stock price change, taking an action
and reward’s calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the
trading agent will derive a trading strategy with the maximized rewards as time proceeds.

Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data ac-
cording to the principle of time-driven simulation.

Environment design is one of the most important part in DRL, because it varies a lot from applications to applications
and from markets to markets. We can’t use an environment for stock trading to trade bitcoin, and vice versa.

The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes
three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried
upon multiple shares. We use an action space {-k,. . . ,-1, 0, 1, . . . , k}, where k denotes the number of shares to buy
and -k denotes the number of shares to sell. For example, “Buy 10 shares of AAPL” or “Sell 10 shares of AAPL” are
10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a
Gaussian distribution, which needs to be normalized and symmetric.

In this article, I set k=200, the entire action space is 200*2+1 = 401 for AAPL.

38 Chapter 11. Tutorials Guide

https://github.com/jealous/stockstats
https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/preprocessing/preprocessors.py

FinRL Documentation, Release 0.3.1

FinRL uses a EnvSetup class to setup environment.

class EnvSetup:

"""
Provides methods for retrieving daily stock data from
Yahoo Finance API

Attributes

stock_dim: int
number of unique stocks

hmax : int
maximum number of shares to trade

initial_amount: int
start money

transaction_cost_pct : float
transaction cost percentage per trade

reward_scaling: float
scaling factor for reward, good for training

tech_indicator_list: list
a list of technical indicator names (modified from config.py)

Methods

fetch_data()
Fetches data from yahoo API

"""

Initialize an environment class:

1 # Initialize env:
2 env_setup = EnvSetup(stock_dim = stock_dimension,
3 state_space = state_space,
4 hmax = 100,
5 initial_amount = 1000000,
6 transaction_cost_pct = 0.001,
7 tech_indicator_list = config.INDICATORS)
8

9 env_train = env_setup.create_env_training(data = train,
10 env_class = StockEnvTrain)

User-defined Environment: a simulation environment class.

FinRL provides blueprint for single stock trading environment.

class SingleStockEnv(gym.Env):
"""
A single stock trading environment for OpenAI gym

Attributes

df: DataFrame
input data

stock_dim : int
(continues on next page)

11.1. 1-Introduction 39

https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/env/environment.py
https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/env/EnvSingleStock.py

FinRL Documentation, Release 0.3.1

(continued from previous page)

number of unique stocks
hmax : int

maximum number of shares to trade
initial_amount : int

start money
transaction_cost_pct: float

transaction cost percentage per trade
reward_scaling: float

scaling factor for reward, good for training
state_space: int

the dimension of input features
action_space: int

equals stock dimension
tech_indicator_list: list

a list of technical indicator names
turbulence_threshold: int

a threshold to control risk aversion
day: int

an increment number to control date

Methods

_sell_stock()
perform sell action based on the sign of the action

_buy_stock()
perform buy action based on the sign of the action

step()
at each step the agent will return actions, then
we will calculate the reward, and return the next
observation.

reset()
reset the environment

render()
use render to return other functions

save_asset_memory()
return account value at each time step

save_action_memory()
return actions/positions at each time step

"""

Tutorial for how to design a customized trading environment will be pulished in the future soon.

Step 5: Implement DRL Algorithms

The implementation of the DRL algorithms are based on OpenAI Baselines and Stable Baselines. Stable Baselines is
a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.

Tip: FinRL library includes fine-tuned standard DRL algorithms, such as DQN, DDPG, Multi-Agent DDPG, PPO,
SAC, A2C and TD3. We also allow users to design their own DRL algorithms by adapting these DRL algorithms.

40 Chapter 11. Tutorials Guide

https://github.com/openai/baselines
https://github.com/hill-a/stable-baselines

FinRL Documentation, Release 0.3.1

FinRL uses a DRLAgent class to implement the algorithms.

class DRLAgent:
"""
Provides implementations for DRL algorithms

Attributes

env: gym environment class
user-defined class

Methods

train_PPO()
the implementation for PPO algorithm

train_A2C()
the implementation for A2C algorithm

train_DDPG()
the implementation for DDPG algorithm

train_TD3()
the implementation for TD3 algorithm

DRL_prediction()
make a prediction in a test dataset and get results

"""

11.1. 1-Introduction 41

FinRL Documentation, Release 0.3.1

Step 6: Model Training

We use 5 DRL models in this article, namely PPO, A2C, DDPG, SAC and TD3. I introduced these models in the
previous article. TD3 is an improvement over DDPG.

Tensorboard: reward and loss function plot We use tensorboard integration for hyperparameter tuning and model pick-
ing. Tensorboard generates nice looking charts.

Once the learn function is called, you can monitor the RL agent during or after the training, with the following bash
command:

1 # cd to the tensorboard_log folder, run the following command
2 tensorboard --logdir ./A2C_20201127-19h01/
3 # you can also add past logging folder
4 tensorboard --logdir ./a2c_tensorboard/;./ppo2_tensorboard/

Total rewards for each of the algorithm:

image/single_2.png

total_timesteps (int): the total number of samples to train on. It is one of the most important hyperparameters, there
are also other important parameters such as learning rate, batch size, buffer size, etc.

To compare these algorithms, I set the total_timesteps = 100k. If we set the total_timesteps too large, then we will face
a risk of overfitting.

By observing the episode_reward chart, we can see that these algorithms will converge to an optimal policy eventually
as the step grows. TD3 converges very fast.

actor_loss for DDPG and policy_loss for TD3:

image/single_3.png

image/single_4.png

Picking models
We pick the TD3 model, because it converges pretty fast and it’s a state of the art model over DDPG. By observing the
episode_reward chart, TD3 doesn’t need to reach full 100k total_timesteps to converge.

Four models: PPO A2C, DDPG, TD3

Model 1: PPO

42 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

1 #tensorboard --logdir ./single_stock_tensorboard/
2 env_train = DummyVecEnv([lambda: SingleStockEnv(train)])
3 model_ppo = PPO2('MlpPolicy', env_train, tensorboard_log="./single_stock_trading_2_

→˓tensorboard/")
4 model_ppo.learn(total_timesteps=100000,tb_log_name="run_aapl_ppo")
5 #model.save('AAPL_ppo_100k')

Model 2: DDPG

1 #tensorboard --logdir ./single_stock_tensorboard/
2 env_train = DummyVecEnv([lambda: SingleStockEnv(train)])
3 model_ddpg = DDPG('MlpPolicy', env_train, tensorboard_log="./single_stock_trading_2_

→˓tensorboard/")
4 model_ddpg.learn(total_timesteps=100000, tb_log_name="run_aapl_ddpg")
5 #model.save('AAPL_ddpg_50k')

Model 3: A2C

1 #tensorboard --logdir ./single_stock_tensorboard/
2 env_train = DummyVecEnv([lambda: SingleStockEnv(train)])
3 model_a2c = A2C('MlpPolicy', env_train, tensorboard_log="./single_stock_trading_2_

→˓tensorboard/")
4 model_a2c.learn(total_timesteps=100000,tb_log_name="run_aapl_a2c")
5 #model.save('AAPL_a2c_50k')

Model 4: TD3

1 #tensorboard --logdir ./single_stock_tensorboard/
2 #DQN<DDPG<TD3
3 env_train = DummyVecEnv([lambda: SingleStockEnv(train)])
4 model_td3 = TD3('MlpPolicy', env_train, tensorboard_log="./single_stock_trading_2_

→˓tensorboard/")
5 model_td3.learn(total_timesteps=100000,tb_log_name="run_aapl_td3")
6 #model.save('AAPL_td3_50k')

Testing data

1 test = data_clean[(data_clean.datadate>='2019-01-01')]
2 # the index needs to start from 0
3 test=test.reset_index(drop=True)

Trading
Assume that we have $100,000 initial capital at 2019-01-01. We use the TD3 model to trade AAPL.

1 model = model_td3
2 env_test = DummyVecEnv([lambda: SingleStockEnv(test)])
3 obs_test = env_test.reset()
4 print("==============Model Prediction===========")
5 for i in range(len(test.index.unique())):
6 action, _states = model.predict(obs_test)
7 obs_test, rewards, dones, info = env_test.step(action)
8 env_test.render()

11.1. 1-Introduction 43

FinRL Documentation, Release 0.3.1

1 # create trading env
2 env_trade, obs_trade = env_setup.create_env_trading(data = trade,
3 env_class = StockEnvTrade,
4 turbulence_threshold=250)
5 ## make a prediction and get the account value change
6 df_account_value = DRLAgent.DRL_prediction(model=model_sac,
7 test_data = trade,
8 test_env = env_trade,
9 test_obs = obs_trade)

image/single_5.png

Step 7: Backtest Our Strategy

Backtesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred
because it reduces the human error. We usually use the `Quantopian pyfolio`_ package to backtest our trading strate-
gies. It is easy to use and consists of various individual plots that provide a comprehensive image of the performance
of a trading strategy.

For simplicity purposes, in the article, we just calculate the Sharpe ratio and the annual return manually.

1 def get_DRL_sharpe():
2 df_total_value=pd.read_csv('account_value.csv',index_col=0)
3 df_total_value.columns = ['account_value']
4 df_total_value['daily_return']=df_total_value.pct_change(1)
5 sharpe = (252**0.5)*df_total_value['daily_return'].mean()/ \
6 df_total_value['daily_return'].std()
7

8 annual_return = ((df_total_value['daily_return'].mean()+1)**252-1)*100
9 print("annual return: ", annual_return)

10 print("sharpe ratio: ", sharpe)
11 return df_total_value
12

13

14 def get_buy_and_hold_sharpe(test):
15 test['daily_return']=test['adjcp'].pct_change(1)
16 sharpe = (252**0.5)*test['daily_return'].mean()/ \
17 test['daily_return'].std()
18 annual_return = ((test['daily_return'].mean()+1)**252-1)*100
19 print("annual return: ", annual_return)
20

21 print("sharpe ratio: ", sharpe)
22 #return sharpe

44 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

11.1.2 Multiple Stock Trading

Deep Reinforcement Learning for Stock Trading from Scratch: Multiple Stock Trading

Tip: Run the code step by step at Google Colab.

Step 1: Preparation

Step 1.1: Overview
To begin with, I would like explain the logic of multiple stock trading using Deep Reinforcement Learning.

We use Dow 30 constituents as an example throughout this article, because those are the most popular stocks.

A lot of people are terrified by the word “Deep Reinforcement Learning”, actually, you can just treat it as a “Smart AI”
or “Smart Stock Trader” or “R2-D2 Trader” if you want, and just use it.

Suppose that we have a well trained DRL agent “DRL Trader”, we want to use it to trade multiple stocks in our portfolio.

• Assume we are at time t, at the end of day at time t, we will know the open-high-low-close price of the Dow 30
constituents stocks. We can use these information to calculate technical indicators such as MACD, RSI, CCI,
ADX. In Reinforcement Learning we call these data or features as “states”.

• We know that our portfolio value V(t) = balance (t) + dollar amount of the stocks (t).

• We feed the states into our well trained DRL Trader, the trader will output a list of actions, the action for each
stock is a value within [-1, 1], we can treat this value as the trading signal, 1 means a strong buy signal, -1 means
a strong sell signal.

• We calculate k = actions *h_max, h_max is a predefined parameter that sets as the maximum amount of shares
to trade. So we will have a list of shares to trade.

• The dollar amount of shares = shares to trade* close price (t).

• Update balance and shares. These dollar amount of shares are the money we need to trade at time t. The updated
balance = balance (t) amount of money we pay to buy shares +amount of money we receive to sell shares. The
updated shares = shares held (t) shares to sell +shares to buy.

• So we take actions to trade based on the advice of our DRL Trader at the end of day at time t (time t’s close price
equals time t+1’s open price). We hope that we will benefit from these actions by the end of day at time t+1.

• Take a step to time t+1, at the end of day, we will know the close price at t+1, the dollar amount of the stocks
(t+1)= sum(updated shares * close price (t+1)). The portfolio value V(t+1)=balance (t+1) + dollar amount of the
stocks (t+1).

• So the step reward by taking the actions from DRL Trader at time t to t+1 is r = v(t+1) v(t). The reward can be
positive or negative in the training stage. But of course, we need a positive reward in trading to say that our DRL
Trader is effective.

• Repeat this process until termination.

Below are the logic chart of multiple stock trading and a made-up example for demonstration purpose:

11.1. 1-Introduction 45

https://colab.research.google.com/github/AI4Finance-Foundation/FinRL/blob/master/FinRL_StockTrading_NeurIPS_2018.ipynb

FinRL Documentation, Release 0.3.1

46 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

image/multiple_2.png

Multiple stock trading is different from single stock trading because as the number of stocks increase, the dimension
of the data will increase, the state and action space in reinforcement learning will grow exponentially. So stability and
reproducibility are very essential here.

We introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance and to develop
their own stock trading strategies.

FinRL is characterized by its reproducibility, scalability, simplicity, applicability and extendibility.

This article is focusing on one of the use cases in our paper: Mutiple Stock Trading. We use one Jupyter notebook to
include all the necessary steps.

Step 1.2: Problem Definition
This problem is to design an automated solution for stock trading. We model the stock trading process as a Markov
Decision Process (MDP). We then formulate our trading goal as a maximization problem. The algorithm is trained
using Deep Reinforcement Learning (DRL) algorithms and the components of the reinforcement learning environment
are:

• Action: The action space describes the allowed actions that the agent interacts with the environment. Normally,
a A includes three actions: a {1, 0, 1}, where 1, 0, 1 represent selling, holding, and buying one stock. Also, an
action can be carried upon multiple shares. We use an action space {k, . . . , 1, 0, 1, . . . , k}, where k denotes the
number of shares. For example, “Buy 10 shares of AAPL” or “Sell 10 shares of AAPL” are 10 or 10, respectively

• Reward function: r(s, a, s) is the incentive mechanism for an agent to learn a better action. The change of the
portfolio value when action a is taken at state s and arriving at new state s’, i.e., r(s, a, s) = v v, where v and v
represent the portfolio values at state s and s, respectively

11.1. 1-Introduction 47

FinRL Documentation, Release 0.3.1

• State: The state space describes the observations that the agent receives from the environment. Just as a human
trader needs to analyze various information before executing a trade, so our trading agent observes many different
features to better learn in an interactive environment.

• Environment: Dow 30 constituents

The data of the stocks for this case study is obtained from Yahoo Finance API. The data contains Open-High-Low-Close
price and volume.

Step 1.3: FinRL installation

1 ## install finrl library
2 !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git

Then we import the packages needed for this demonstration.

Step 1.4: Import packages

1 import pandas as pd
2 import numpy as np
3 import matplotlib
4 import matplotlib.pyplot as plt
5 # matplotlib.use('Agg')
6 import datetime
7

8 %matplotlib inline
9 from finrl import config

10 from finrl import config_tickers
11 from finrl.finrl_meta.preprocessor.yahoodownloader import YahooDownloader
12 from finrl.finrl_meta.preprocessor.preprocessors import FeatureEngineer, data_split
13 from finrl.finrl_meta.env_stock_trading.env_stocktrading import StockTradingEnv
14 from finrl.agents.stablebaselines3.models import DRLAgent
15

16 from finrl.plot import backtest_stats, backtest_plot, get_daily_return, get_baseline
17 from pprint import pprint
18

19 import sys
20 sys.path.append("../FinRL-Library")
21

22 import itertools

Finally, create folders for storage.

Step 1.5: Create folders

1 import os
2 if not os.path.exists("./" + config.DATA_SAVE_DIR):
3 os.makedirs("./" + config.DATA_SAVE_DIR)
4 if not os.path.exists("./" + config.TRAINED_MODEL_DIR):
5 os.makedirs("./" + config.TRAINED_MODEL_DIR)
6 if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR):
7 os.makedirs("./" + config.TENSORBOARD_LOG_DIR)
8 if not os.path.exists("./" + config.RESULTS_DIR):
9 os.makedirs("./" + config.RESULTS_DIR)

Then all the preparation work are done. We can start now!

48 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

Step 2: Download Data

Before training our DRL agent, we need to get the historical data of DOW30 stocks first. Here we use the data from
Yahoo! Finance. Yahoo! Finance is a website that provides stock data, financial news, financial reports, etc. All the
data provided by Yahoo Finance is free. yfinance is an open-source library that provides APIs to download data from
Yahoo! Finance. We will use this package to download data here.

FinRL uses a YahooDownloader class to extract data.

class YahooDownloader:
"""
Provides methods for retrieving daily stock data from Yahoo Finance API

Attributes

start_date : str
start date of the data (modified from config.py)

end_date : str
end date of the data (modified from config.py)

ticker_list : list
a list of stock tickers (modified from config.py)

Methods

fetch_data()
Fetches data from yahoo API

"""

Download and save the data in a pandas DataFrame:

1 # Download and save the data in a pandas DataFrame:
2 df = YahooDownloader(start_date = '2009-01-01',
3 end_date = '2020-09-30',
4 ticker_list = config_tickers.DOW_30_TICKER).fetch_data()
5

6 print(df.sort_values(['date','tic'],ignore_index=True).head(30))

image/multiple_3.png

Step 3: Preprocess Data

Data preprocessing is a crucial step for training a high quality machine learning model. We need to check for missing
data and do feature engineering in order to convert the data into a model-ready state.

Step 3.1: Check missing data

1 # check missing data
2 dow_30.isnull().values.any()

Step 3.2: Add technical indicators

11.1. 1-Introduction 49

https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/marketdata/yahoodownloader.py

FinRL Documentation, Release 0.3.1

In practical trading, various information needs to be taken into account, for example the historical stock prices, cur-
rent holding shares, technical indicators, etc. In this article, we demonstrate two trend-following technical indicators:
MACD and RSI.

1 def add_technical_indicator(df):
2 """
3 calcualte technical indicators
4 use stockstats package to add technical inidactors
5 :param data: (df) pandas dataframe
6 :return: (df) pandas dataframe
7 """
8 stock = Sdf.retype(df.copy())
9 stock['close'] = stock['adjcp']

10 unique_ticker = stock.tic.unique()
11

12 macd = pd.DataFrame()
13 rsi = pd.DataFrame()
14

15 #temp = stock[stock.tic == unique_ticker[0]]['macd']
16 for i in range(len(unique_ticker)):
17 ## macd
18 temp_macd = stock[stock.tic == unique_ticker[i]]['macd']
19 temp_macd = pd.DataFrame(temp_macd)
20 macd = macd.append(temp_macd, ignore_index=True)
21 ## rsi
22 temp_rsi = stock[stock.tic == unique_ticker[i]]['rsi_30']
23 temp_rsi = pd.DataFrame(temp_rsi)
24 rsi = rsi.append(temp_rsi, ignore_index=True)
25

26 df['macd'] = macd
27 df['rsi'] = rsi
28 return df

Step 3.3: Add turbulence index
Risk-aversion reflects whether an investor will choose to preserve the capital. It also influences one’s trading strategy
when facing different market volatility level.

To control the risk in a worst-case scenario, such as financial crisis of 2007–2008, FinRL employs the financial turbu-
lence index that measures extreme asset price fluctuation.

1 def add_turbulence(df):
2 """
3 add turbulence index from a precalcualted dataframe
4 :param data: (df) pandas dataframe
5 :return: (df) pandas dataframe
6 """
7 turbulence_index = calcualte_turbulence(df)
8 df = df.merge(turbulence_index, on='datadate')
9 df = df.sort_values(['datadate','tic']).reset_index(drop=True)

10 return df
11

12

13

14 def calcualte_turbulence(df):
(continues on next page)

50 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

15 """calculate turbulence index based on dow 30"""
16 # can add other market assets
17

18 df_price_pivot=df.pivot(index='datadate', columns='tic', values='adjcp')
19 unique_date = df.datadate.unique()
20 # start after a year
21 start = 252
22 turbulence_index = [0]*start
23 #turbulence_index = [0]
24 count=0
25 for i in range(start,len(unique_date)):
26 current_price = df_price_pivot[df_price_pivot.index == unique_date[i]]
27 hist_price = df_price_pivot[[n in unique_date[0:i] for n in df_price_pivot.index␣

→˓]]
28 cov_temp = hist_price.cov()
29 current_temp=(current_price - np.mean(hist_price,axis=0))
30 temp = current_temp.values.dot(np.linalg.inv(cov_temp)).dot(current_temp.values.

→˓T)
31 if temp>0:
32 count+=1
33 if count>2:
34 turbulence_temp = temp[0][0]
35 else:
36 #avoid large outlier because of the calculation just begins
37 turbulence_temp=0
38 else:
39 turbulence_temp=0
40 turbulence_index.append(turbulence_temp)
41

42

43 turbulence_index = pd.DataFrame({'datadate':df_price_pivot.index,
44 'turbulence':turbulence_index})
45 return turbulence_index

Step 3.4 Feature Engineering
FinRL uses a FeatureEngineer class to preprocess data.

Perform Feature Engineering:

1 # Perform Feature Engineering:
2 df = FeatureEngineer(df.copy(),
3 use_technical_indicator=True,
4 tech_indicator_list = config.INDICATORS,
5 use_turbulence=True,
6 user_defined_feature = False).preprocess_data()

image/multiple_4.png

11.1. 1-Introduction 51

https://github.com/AI4Finance-LLC/FinRL-Library/blob/master/finrl/preprocessing/preprocessors.py

FinRL Documentation, Release 0.3.1

Step 4: Design Environment

Considering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a
Markov Decision Process (MDP) problem. The training process involves observing stock price change, taking an action
and reward’s calculation to have the agent adjusting its strategy accordingly. By interacting with the environment, the
trading agent will derive a trading strategy with the maximized rewards as time proceeds.

Our trading environments, based on OpenAI Gym framework, simulate live stock markets with real market data ac-
cording to the principle of time-driven simulation.

The action space describes the allowed actions that the agent interacts with the environment. Normally, action a includes
three actions: {-1, 0, 1}, where -1, 0, 1 represent selling, holding, and buying one share. Also, an action can be carried
upon multiple shares. We use an action space {-k,. . . ,-1, 0, 1, . . . , k}, where k denotes the number of shares to buy
and -k denotes the number of shares to sell. For example, “Buy 10 shares of AAPL” or “Sell 10 shares of AAPL” are
10 or -10, respectively. The continuous action space needs to be normalized to [-1, 1], since the policy is defined on a
Gaussian distribution, which needs to be normalized and symmetric.

Step 4.1: Environment for Training

1 ## Environment for Training
2 import numpy as np
3 import pandas as pd
4 from gym.utils import seeding
5 import gym
6 from gym import spaces
7 import matplotlib
8 matplotlib.use('Agg')
9 import matplotlib.pyplot as plt

10

11 # shares normalization factor
12 # 100 shares per trade
13 HMAX_NORMALIZE = 100
14 # initial amount of money we have in our account
15 INITIAL_ACCOUNT_BALANCE=1000000
16 # total number of stocks in our portfolio
17 STOCK_DIM = 30
18 # transaction fee: 1/1000 reasonable percentage
19 TRANSACTION_FEE_PERCENT = 0.001
20

21 REWARD_SCALING = 1e-4
22

23

24 class StockEnvTrain(gym.Env):
25 """A stock trading environment for OpenAI gym"""
26 metadata = {'render.modes': ['human']}
27

28 def __init__(self, df,day = 0):
29 #super(StockEnv, self).__init__()
30 self.day = day
31 self.df = df
32

33 # action_space normalization and shape is STOCK_DIM
34 self.action_space = spaces.Box(low = -1, high = 1,shape = (STOCK_DIM,))
35 # Shape = 181: [Current Balance]+[prices 1-30]+[owned shares 1-30]
36 # +[macd 1-30]+ [rsi 1-30] + [cci 1-30] + [adx 1-30]

(continues on next page)

52 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

37 self.observation_space = spaces.Box(low=0, high=np.inf, shape = (121,))
38 # load data from a pandas dataframe
39 self.data = self.df.loc[self.day,:]
40 self.terminal = False
41 # initalize state
42 self.state = [INITIAL_ACCOUNT_BALANCE] + \
43 self.data.adjcp.values.tolist() + \
44 [0]*STOCK_DIM + \
45 self.data.macd.values.tolist() + \
46 self.data.rsi.values.tolist()
47 #self.data.cci.values.tolist() + \
48 #self.data.adx.values.tolist()
49 # initialize reward
50 self.reward = 0
51 self.cost = 0
52 # memorize all the total balance change
53 self.asset_memory = [INITIAL_ACCOUNT_BALANCE]
54 self.rewards_memory = []
55 self.trades = 0
56 self._seed()
57

58 def _sell_stock(self, index, action):
59 # perform sell action based on the sign of the action
60 if self.state[index+STOCK_DIM+1] > 0:
61 #update balance
62 self.state[0] += \
63 self.state[index+1]*min(abs(action),self.state[index+STOCK_DIM+1]) * \
64 (1- TRANSACTION_FEE_PERCENT)
65

66 self.state[index+STOCK_DIM+1] -= min(abs(action), self.state[index+STOCK_
→˓DIM+1])

67 self.cost +=self.state[index+1]*min(abs(action),self.state[index+STOCK_
→˓DIM+1]) * \

68 TRANSACTION_FEE_PERCENT
69 self.trades+=1
70 else:
71 pass
72

73 def _buy_stock(self, index, action):
74 # perform buy action based on the sign of the action
75 available_amount = self.state[0] // self.state[index+1]
76 # print('available_amount:{}'.format(available_amount))
77

78 #update balance
79 self.state[0] -= self.state[index+1]*min(available_amount, action)* \
80 (1+ TRANSACTION_FEE_PERCENT)
81

82 self.state[index+STOCK_DIM+1] += min(available_amount, action)
83

84 self.cost+=self.state[index+1]*min(available_amount, action)* \
85 TRANSACTION_FEE_PERCENT
86 self.trades+=1

(continues on next page)

11.1. 1-Introduction 53

FinRL Documentation, Release 0.3.1

(continued from previous page)

87

88 def step(self, actions):
89 # print(self.day)
90 self.terminal = self.day >= len(self.df.index.unique())-1
91 # print(actions)
92

93 if self.terminal:
94 plt.plot(self.asset_memory,'r')
95 plt.savefig('account_value_train.png')
96 plt.close()
97 end_total_asset = self.state[0]+ \
98 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_

→˓DIM+1):(STOCK_DIM*2+1)]))
99 print("previous_total_asset:{}".format(self.asset_memory[0]))

100

101 print("end_total_asset:{}".format(end_total_asset))
102 df_total_value = pd.DataFrame(self.asset_memory)
103 df_total_value.to_csv('account_value_train.csv')
104 print("total_reward:{}".format(self.state[0]+sum(np.array(self.

→˓state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):61]))- INITIAL_ACCOUNT_
→˓BALANCE))

105 print("total_cost: ", self.cost)
106 print("total_trades: ", self.trades)
107 df_total_value.columns = ['account_value']
108 df_total_value['daily_return']=df_total_value.pct_change(1)
109 sharpe = (252**0.5)*df_total_value['daily_return'].mean()/ \
110 df_total_value['daily_return'].std()
111 print("Sharpe: ",sharpe)
112 print("=================================")
113 df_rewards = pd.DataFrame(self.rewards_memory)
114 df_rewards.to_csv('account_rewards_train.csv')
115

116 return self.state, self.reward, self.terminal,{}
117

118 else:
119 actions = actions * HMAX_NORMALIZE
120

121 begin_total_asset = self.state[0]+ \
122 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_

→˓DIM+1):61]))
123 #print("begin_total_asset:{}".format(begin_total_asset))
124

125 argsort_actions = np.argsort(actions)
126

127 sell_index = argsort_actions[:np.where(actions < 0)[0].shape[0]]
128 buy_index = argsort_actions[::-1][:np.where(actions > 0)[0].shape[0]]
129

130 for index in sell_index:
131 # print('take sell action'.format(actions[index]))
132 self._sell_stock(index, actions[index])
133

134 for index in buy_index:

(continues on next page)

54 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

135 # print('take buy action: {}'.format(actions[index]))
136 self._buy_stock(index, actions[index])
137

138 self.day += 1
139 self.data = self.df.loc[self.day,:]
140 #load next state
141 # print("stock_shares:{}".format(self.state[29:]))
142 self.state = [self.state[0]] + \
143 self.data.adjcp.values.tolist() + \
144 list(self.state[(STOCK_DIM+1):61]) + \
145 self.data.macd.values.tolist() + \
146 self.data.rsi.values.tolist()
147

148 end_total_asset = self.state[0]+ \
149 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_

→˓DIM+1):61]))
150

151 #print("end_total_asset:{}".format(end_total_asset))
152

153 self.reward = end_total_asset - begin_total_asset
154 self.rewards_memory.append(self.reward)
155

156 self.reward = self.reward * REWARD_SCALING
157 # print("step_reward:{}".format(self.reward))
158

159 self.asset_memory.append(end_total_asset)
160

161

162 return self.state, self.reward, self.terminal, {}
163

164 def reset(self):
165 self.asset_memory = [INITIAL_ACCOUNT_BALANCE]
166 self.day = 0
167 self.data = self.df.loc[self.day,:]
168 self.cost = 0
169 self.trades = 0
170 self.terminal = False
171 self.rewards_memory = []
172 #initiate state
173 self.state = [INITIAL_ACCOUNT_BALANCE] + \
174 self.data.adjcp.values.tolist() + \
175 [0]*STOCK_DIM + \
176 self.data.macd.values.tolist() + \
177 self.data.rsi.values.tolist()
178 return self.state
179

180 def render(self, mode='human'):
181 return self.state
182

183 def _seed(self, seed=None):
184 self.np_random, seed = seeding.np_random(seed)
185 return [seed]

11.1. 1-Introduction 55

FinRL Documentation, Release 0.3.1

Step 4.2: Environment for Trading

1 ## Environment for Trading
2 import numpy as np
3 import pandas as pd
4 from gym.utils import seeding
5 import gym
6 from gym import spaces
7 import matplotlib
8 matplotlib.use('Agg')
9 import matplotlib.pyplot as plt

10

11 # shares normalization factor
12 # 100 shares per trade
13 HMAX_NORMALIZE = 100
14 # initial amount of money we have in our account
15 INITIAL_ACCOUNT_BALANCE=1000000
16 # total number of stocks in our portfolio
17 STOCK_DIM = 30
18 # transaction fee: 1/1000 reasonable percentage
19 TRANSACTION_FEE_PERCENT = 0.001
20

21 # turbulence index: 90-150 reasonable threshold
22 #TURBULENCE_THRESHOLD = 140
23 REWARD_SCALING = 1e-4
24

25 class StockEnvTrade(gym.Env):
26 """A stock trading environment for OpenAI gym"""
27 metadata = {'render.modes': ['human']}
28

29 def __init__(self, df,day = 0,turbulence_threshold=140):
30 #super(StockEnv, self).__init__()
31 #money = 10 , scope = 1
32 self.day = day
33 self.df = df
34 # action_space normalization and shape is STOCK_DIM
35 self.action_space = spaces.Box(low = -1, high = 1,shape = (STOCK_DIM,))
36 # Shape = 181: [Current Balance]+[prices 1-30]+[owned shares 1-30]
37 # +[macd 1-30]+ [rsi 1-30] + [cci 1-30] + [adx 1-30]
38 self.observation_space = spaces.Box(low=0, high=np.inf, shape = (121,))
39 # load data from a pandas dataframe
40 self.data = self.df.loc[self.day,:]
41 self.terminal = False
42 self.turbulence_threshold = turbulence_threshold
43 # initalize state
44 self.state = [INITIAL_ACCOUNT_BALANCE] + \
45 self.data.adjcp.values.tolist() + \
46 [0]*STOCK_DIM + \
47 self.data.macd.values.tolist() + \
48 self.data.rsi.values.tolist()
49

50 # initialize reward
51 self.reward = 0

(continues on next page)

56 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

52 self.turbulence = 0
53 self.cost = 0
54 self.trades = 0
55 # memorize all the total balance change
56 self.asset_memory = [INITIAL_ACCOUNT_BALANCE]
57 self.rewards_memory = []
58 self.actions_memory=[]
59 self.date_memory=[]
60 self._seed()
61

62

63 def _sell_stock(self, index, action):
64 # perform sell action based on the sign of the action
65 if self.turbulence<self.turbulence_threshold:
66 if self.state[index+STOCK_DIM+1] > 0:
67 #update balance
68 self.state[0] += \
69 self.state[index+1]*min(abs(action),self.state[index+STOCK_DIM+1]) * \
70 (1- TRANSACTION_FEE_PERCENT)
71

72 self.state[index+STOCK_DIM+1] -= min(abs(action), self.state[index+STOCK_
→˓DIM+1])

73 self.cost +=self.state[index+1]*min(abs(action),self.state[index+STOCK_
→˓DIM+1]) * \

74 TRANSACTION_FEE_PERCENT
75 self.trades+=1
76 else:
77 pass
78 else:
79 # if turbulence goes over threshold, just clear out all positions
80 if self.state[index+STOCK_DIM+1] > 0:
81 #update balance
82 self.state[0] += self.state[index+1]*self.state[index+STOCK_DIM+1]* \
83 (1- TRANSACTION_FEE_PERCENT)
84 self.state[index+STOCK_DIM+1] =0
85 self.cost += self.state[index+1]*self.state[index+STOCK_DIM+1]* \
86 TRANSACTION_FEE_PERCENT
87 self.trades+=1
88 else:
89 pass
90

91 def _buy_stock(self, index, action):
92 # perform buy action based on the sign of the action
93 if self.turbulence< self.turbulence_threshold:
94 available_amount = self.state[0] // self.state[index+1]
95 # print('available_amount:{}'.format(available_amount))
96

97 #update balance
98 self.state[0] -= self.state[index+1]*min(available_amount, action)* \
99 (1+ TRANSACTION_FEE_PERCENT)

100

101 self.state[index+STOCK_DIM+1] += min(available_amount, action)

(continues on next page)

11.1. 1-Introduction 57

FinRL Documentation, Release 0.3.1

(continued from previous page)

102

103 self.cost+=self.state[index+1]*min(available_amount, action)* \
104 TRANSACTION_FEE_PERCENT
105 self.trades+=1
106 else:
107 # if turbulence goes over threshold, just stop buying
108 pass
109

110 def step(self, actions):
111 # print(self.day)
112 self.terminal = self.day >= len(self.df.index.unique())-1
113 # print(actions)
114

115 if self.terminal:
116 plt.plot(self.asset_memory,'r')
117 plt.savefig('account_value_trade.png')
118 plt.close()
119

120 df_date = pd.DataFrame(self.date_memory)
121 df_date.columns = ['datadate']
122 df_date.to_csv('df_date.csv')
123

124

125 df_actions = pd.DataFrame(self.actions_memory)
126 df_actions.columns = self.data.tic.values
127 df_actions.index = df_date.datadate
128 df_actions.to_csv('df_actions.csv')
129

130 df_total_value = pd.DataFrame(self.asset_memory)
131 df_total_value.to_csv('account_value_trade.csv')
132 end_total_asset = self.state[0]+ \
133 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_

→˓DIM+1):(STOCK_DIM*2+1)]))
134 print("previous_total_asset:{}".format(self.asset_memory[0]))
135

136 print("end_total_asset:{}".format(end_total_asset))
137 print("total_reward:{}".format(self.state[0]+sum(np.array(self.

→˓state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_DIM+1):61]))- self.asset_memory[0]␣
→˓))

138 print("total_cost: ", self.cost)
139 print("total trades: ", self.trades)
140

141 df_total_value.columns = ['account_value']
142 df_total_value['daily_return']=df_total_value.pct_change(1)
143 sharpe = (252**0.5)*df_total_value['daily_return'].mean()/ \
144 df_total_value['daily_return'].std()
145 print("Sharpe: ",sharpe)
146

147 df_rewards = pd.DataFrame(self.rewards_memory)
148 df_rewards.to_csv('account_rewards_trade.csv')
149

150 # print('total asset: {}'.format(self.state[0]+ sum(np.array(self.
(continues on next page)

58 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

→˓state[1:29])*np.array(self.state[29:]))))
151 #with open('obs.pkl', 'wb') as f:
152 # pickle.dump(self.state, f)
153

154 return self.state, self.reward, self.terminal,{}
155

156 else:
157 # print(np.array(self.state[1:29]))
158 self.date_memory.append(self.data.datadate.unique())
159

160 #print(self.data)
161 actions = actions * HMAX_NORMALIZE
162 if self.turbulence>=self.turbulence_threshold:
163 actions=np.array([-HMAX_NORMALIZE]*STOCK_DIM)
164 self.actions_memory.append(actions)
165

166 #actions = (actions.astype(int))
167

168 begin_total_asset = self.state[0]+ \
169 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_

→˓DIM+1):(STOCK_DIM*2+1)]))
170 #print("begin_total_asset:{}".format(begin_total_asset))
171

172 argsort_actions = np.argsort(actions)
173 #print(argsort_actions)
174

175 sell_index = argsort_actions[:np.where(actions < 0)[0].shape[0]]
176 buy_index = argsort_actions[::-1][:np.where(actions > 0)[0].shape[0]]
177

178 for index in sell_index:
179 # print('take sell action'.format(actions[index]))
180 self._sell_stock(index, actions[index])
181

182 for index in buy_index:
183 # print('take buy action: {}'.format(actions[index]))
184 self._buy_stock(index, actions[index])
185

186 self.day += 1
187 self.data = self.df.loc[self.day,:]
188 self.turbulence = self.data['turbulence'].values[0]
189 #print(self.turbulence)
190 #load next state
191 # print("stock_shares:{}".format(self.state[29:]))
192 self.state = [self.state[0]] + \
193 self.data.adjcp.values.tolist() + \
194 list(self.state[(STOCK_DIM+1):(STOCK_DIM*2+1)]) + \
195 self.data.macd.values.tolist() + \
196 self.data.rsi.values.tolist()
197

198 end_total_asset = self.state[0]+ \
199 sum(np.array(self.state[1:(STOCK_DIM+1)])*np.array(self.state[(STOCK_

→˓DIM+1):(STOCK_DIM*2+1)]))

(continues on next page)

11.1. 1-Introduction 59

FinRL Documentation, Release 0.3.1

(continued from previous page)

200

201 #print("end_total_asset:{}".format(end_total_asset))
202

203 self.reward = end_total_asset - begin_total_asset
204 self.rewards_memory.append(self.reward)
205

206 self.reward = self.reward * REWARD_SCALING
207

208 self.asset_memory.append(end_total_asset)
209

210 return self.state, self.reward, self.terminal, {}
211

212 def reset(self):
213 self.asset_memory = [INITIAL_ACCOUNT_BALANCE]
214 self.day = 0
215 self.data = self.df.loc[self.day,:]
216 self.turbulence = 0
217 self.cost = 0
218 self.trades = 0
219 self.terminal = False
220 #self.iteration=self.iteration
221 self.rewards_memory = []
222 self.actions_memory=[]
223 self.date_memory=[]
224 #initiate state
225 self.state = [INITIAL_ACCOUNT_BALANCE] + \
226 self.data.adjcp.values.tolist() + \
227 [0]*STOCK_DIM + \
228 self.data.macd.values.tolist() + \
229 self.data.rsi.values.tolist()
230

231 return self.state
232

233 def render(self, mode='human',close=False):
234 return self.state
235

236

237 def _seed(self, seed=None):
238 self.np_random, seed = seeding.np_random(seed)
239 return [seed]

Step 5: Implement DRL Algorithms

The implementation of the DRL algorithms are based on OpenAI Baselines and Stable Baselines. Stable Baselines is
a fork of OpenAI Baselines, with a major structural refactoring, and code cleanups.

Step 5.1: Training data split: 2009-01-01 to 2018-12-31

1 def data_split(df,start,end):
2 """
3 split the dataset into training or testing using date

(continues on next page)

60 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

4 :param data: (df) pandas dataframe, start, end
5 :return: (df) pandas dataframe
6 """
7 data = df[(df.datadate >= start) & (df.datadate < end)]
8 data=data.sort_values(['datadate','tic'],ignore_index=True)
9 data.index = data.datadate.factorize()[0]

10 return data

Step 5.2: Model training: DDPG

1 ## tensorboard --logdir ./multiple_stock_tensorboard/
2 # add noise to the action in DDPG helps in learning for better exploration
3 n_actions = env_train.action_space.shape[-1]
4 param_noise = None
5 action_noise = OrnsteinUhlenbeckActionNoise(mean=np.zeros(n_actions), sigma=float(0.5) *␣

→˓np.ones(n_actions))
6

7 # model settings
8 model_ddpg = DDPG('MlpPolicy',
9 env_train,

10 batch_size=64,
11 buffer_size=100000,
12 param_noise=param_noise,
13 action_noise=action_noise,
14 verbose=0,
15 tensorboard_log="./multiple_stock_tensorboard/")
16

17 ## 250k timesteps: took about 20 mins to finish
18 model_ddpg.learn(total_timesteps=250000, tb_log_name="DDPG_run_1")

Step 5.3: Trading
Assume that we have $1,000,000 initial capital at 2019-01-01. We use the DDPG model to trade Dow jones 30 stocks.

Step 5.4: Set turbulence threshold
Set the turbulence threshold to be the 99% quantile of insample turbulence data, if current turbulence index is greater
than the threshold, then we assume that the current market is volatile

1 insample_turbulence = dow_30[(dow_30.datadate<'2019-01-01') & (dow_30.datadate>='2009-01-
→˓01')]

2 insample_turbulence = insample_turbulence.drop_duplicates(subset=['datadate'])

Step 5.5: Prepare test data and environment

1 # test data
2 test = data_split(dow_30, start='2019-01-01', end='2020-10-30')
3 # testing env
4 env_test = DummyVecEnv([lambda: StockEnvTrade(test, turbulence_threshold=insample_

→˓turbulence_threshold)])
5 obs_test = env_test.reset()

Step 5.6: Prediction

11.1. 1-Introduction 61

FinRL Documentation, Release 0.3.1

1 def DRL_prediction(model, data, env, obs):
2 print("==============Model Prediction===========")
3 for i in range(len(data.index.unique())):
4 action, _states = model.predict(obs)
5 obs, rewards, dones, info = env.step(action)
6 env.render()

Step 6: Backtest Our Strategy

For simplicity purposes, in the article, we just calculate the Sharpe ratio and the annual return manually.

1 def backtest_strat(df):
2 strategy_ret= df.copy()
3 strategy_ret['Date'] = pd.to_datetime(strategy_ret['Date'])
4 strategy_ret.set_index('Date', drop = False, inplace = True)
5 strategy_ret.index = strategy_ret.index.tz_localize('UTC')
6 del strategy_ret['Date']
7 ts = pd.Series(strategy_ret['daily_return'].values, index=strategy_ret.index)
8 return ts

Step 6.1: Dow Jones Industrial Average

1 def get_buy_and_hold_sharpe(test):
2 test['daily_return']=test['adjcp'].pct_change(1)
3 sharpe = (252**0.5)*test['daily_return'].mean()/ \
4 test['daily_return'].std()
5 annual_return = ((test['daily_return'].mean()+1)**252-1)*100
6 print("annual return: ", annual_return)
7

8 print("sharpe ratio: ", sharpe)
9 #return sharpe

Step 6.2: Our DRL trading strategy

1 def get_daily_return(df):
2 df['daily_return']=df.account_value.pct_change(1)
3 #df=df.dropna()
4 sharpe = (252**0.5)*df['daily_return'].mean()/ \
5 df['daily_return'].std()
6

7 annual_return = ((df['daily_return'].mean()+1)**252-1)*100
8 print("annual return: ", annual_return)
9 print("sharpe ratio: ", sharpe)

10 return df

Step 6.3: Plot the results using Quantopian pyfolio
Backtesting plays a key role in evaluating the performance of a trading strategy. Automated backtesting tool is preferred
because it reduces the human error. We usually use the Quantopian pyfolio package to backtest our trading strategies.
It is easy to use and consists of various individual plots that provide a comprehensive image of the performance of a
trading strategy.

62 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

1 %matplotlib inline
2 with pyfolio.plotting.plotting_context(font_scale=1.1):
3 pyfolio.create_full_tear_sheet(returns = DRL_strat,
4 benchmark_rets=dow_strat, set_context=False)

11.1.3 Portfolio Allocation

Our paper: FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance.

Presented at NeurIPS 2020: Deep RL Workshop.

The Jupyter notebook codes are available on our Github and Google Colab.

Tip:
• FinRL Single Stock Trading at Google Colab.

• FinRL Multiple Stocks Trading at Google Colab:

Check our previous tutorials: Single Stock Trading and Multiple Stock Trading for detailed explanation of the FinRL
architecture and modules.

Overview

To begin with, we would like to explain the logic of portfolio allocation using Deep Reinforcement Learning.We use
Dow 30 constituents as an example throughout this article, because those are the most popular stocks.

Let’s say that we got a million dollars at the beginning of 2019. We want to invest this $1,000,000 into stock markets,
in this case is Dow Jones 30 constituents.Assume that no margin, no short sale, no treasury bill (use all the money to
trade only these 30 stocks). So that the weight of each individual stock is non-negative, and the weights of all the stocks
add up to one.

We hire a smart portfolio manager- Mr. Deep Reinforcement Learning. Mr. DRL will give us daily advice includes
the portfolio weights or the proportions of money to invest in these 30 stocks. So every day we just need to rebalance
the portfolio weights of the stocks.The basic logic is as follows.

tutorial/image/portfolio_allocation_1.png

Portfolio allocation is different from multiple stock trading because we are essentially rebalancing the weights at each
time step, and we have to use all available money.

The traditional and the most popular way of doing portfolio allocation is mean-variance or modern portfolio theory
(MPT):

image/portfolio_allocation_2.png

11.1. 1-Introduction 63

https://arxiv.org/abs/2011.09607
https://github.com/AI4Finance-LLC/FinRL-Library
https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_multiple_stock_trading.ipynb
https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_single_stock_trading.ipynb
https://colab.research.google.com/github/AI4Finance-LLC/FinRL-Library/blob/master/FinRL_multiple_stock_trading.ipynb
https://finrl.readthedocs.io/en/latest/tutorial/SingleStockTrading.html
https://finrl.readthedocs.io/en/latest/tutorial/MultipleStockTrading.html

FinRL Documentation, Release 0.3.1

However, MPT performs not so well in out-of-sample data. MPT is calculated only based on stock returns, if we want
to take other relevant factors into account, for example some of the technical indicators like MACD or RSI, MPT may
not be able to combine these information together well.

We introduce a DRL library FinRL that facilitates beginners to expose themselves to quantitative finance. FinRL is a
DRL library designed specifically for automated stock trading with an effort for educational and demonstrative purpose.

This article is focusing on one of the use cases in our paper: Portfolio Allocation. We use one Jupyter notebook to
include all the necessary steps.

Problem Definition

This problem is to design an automated trading solution for portfolio allocation. We model the stock trading process
as a Markov Decision Process (MDP). We then formulate our trading goal as a maximization problem.

The components of the reinforcement learning environment are:

• Action: portfolio weight of each stock is within [0,1]. We use softmax function to normalize the actions to sum
to 1.

• State: {Covariance Matrix, MACD, RSI, CCI, ADX}, **state space shape is (34, 30). 34 is the number of
rows, 30 is the number of columns.

• Reward function: r(s, a, s) = p_t, p_t is the cumulative portfolio value.

• Environment: portfolio allocation for Dow 30 constituents.

Covariance matrix is a good feature because portfolio managers use it to quantify the risk (standard deviation) associated
with a particular portfolio.

We also assume no transaction cost, because we are trying to make a simple portfolio allocation case as a starting point.

Load Python Packages

Install the unstable development version of FinRL:

1 # Install the unstable development version in Jupyter notebook:
2 !pip install git+https://github.com/AI4Finance-LLC/FinRL-Library.git

Import Packages:

1 # import packages
2 import pandas as pd
3 import numpy as np
4 import matplotlib
5 import matplotlib.pyplot as plt
6 matplotlib.use('Agg')
7 import datetime
8

9 from finrl import config
10 from finrl import config_tickers
11 from finrl.marketdata.yahoodownloader import YahooDownloader
12 from finrl.preprocessing.preprocessors import FeatureEngineer
13 from finrl.preprocessing.data import data_split
14 from finrl.env.environment import EnvSetup
15 from finrl.env.EnvMultipleStock_train import StockEnvTrain
16 from finrl.env.EnvMultipleStock_trade import StockEnvTrade

(continues on next page)

64 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

17 from finrl.model.models import DRLAgent
18 from finrl.trade.backtest import BackTestStats, BaselineStats, BackTestPlot, backtest_

→˓strat, baseline_strat
19 from finrl.trade.backtest import backtest_strat, baseline_strat
20

21 import os
22 if not os.path.exists("./" + config.DATA_SAVE_DIR):
23 os.makedirs("./" + config.DATA_SAVE_DIR)
24 if not os.path.exists("./" + config.TRAINED_MODEL_DIR):
25 os.makedirs("./" + config.TRAINED_MODEL_DIR)
26 if not os.path.exists("./" + config.TENSORBOARD_LOG_DIR):
27 os.makedirs("./" + config.TENSORBOARD_LOG_DIR)
28 if not os.path.exists("./" + config.RESULTS_DIR):
29 os.makedirs("./" + config.RESULTS_DIR)

Download Data

FinRL uses a YahooDownloader class to extract data.

class YahooDownloader:
"""
Provides methods for retrieving daily stock data from Yahoo Finance API

Attributes

start_date : str
start date of the data (modified from config.py)

end_date : str
end date of the data (modified from config.py)

ticker_list : list
a list of stock tickers (modified from config.py)

Methods

fetch_data()
Fetches data from yahoo API

"""

Download and save the data in a pandas DataFrame:

1 # Download and save the data in a pandas DataFrame:
2 df = YahooDownloader(start_date = '2008-01-01',
3 end_date = '2020-12-01',
4 ticker_list = config_tickers.DOW_30_TICKER).fetch_data()

11.1. 1-Introduction 65

FinRL Documentation, Release 0.3.1

Preprocess Data

FinRL uses a FeatureEngineer class to preprocess data.

class FeatureEngineer:
"""
Provides methods for preprocessing the stock price data

Attributes

df: DataFrame
data downloaded from Yahoo API

feature_number : int
number of features we used

use_technical_indicator : boolean
we technical indicator or not

use_turbulence : boolean
use turbulence index or not

Methods

preprocess_data()
main method to do the feature engineering

"""

Perform Feature Engineering: covariance matrix + technical indicators:

1 # Perform Feature Engineering:
2 df = FeatureEngineer(df.copy(),
3 use_technical_indicator=True,
4 use_turbulence=False).preprocess_data()
5

6

7 # add covariance matrix as states
8 df=df.sort_values(['date','tic'],ignore_index=True)
9 df.index = df.date.factorize()[0]

10

11 cov_list = []
12 # look back is one year
13 lookback=252
14 for i in range(lookback,len(df.index.unique())):
15 data_lookback = df.loc[i-lookback:i,:]
16 price_lookback=data_lookback.pivot_table(index = 'date',columns = 'tic', values =

→˓'close')
17 return_lookback = price_lookback.pct_change().dropna()
18 covs = return_lookback.cov().values
19 cov_list.append(covs)
20

21 df_cov = pd.DataFrame({'date':df.date.unique()[lookback:],'cov_list':cov_list})
22 df = df.merge(df_cov, on='date')
23 df = df.sort_values(['date','tic']).reset_index(drop=True)
24 df.head()

66 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

image/portfolio_allocation_3.png

Build Environment

FinRL uses a EnvSetup class to setup environment.

class EnvSetup:
"""
Provides methods for retrieving daily stock data from
Yahoo Finance API

Attributes

stock_dim: int

number of unique stocks
hmax : int

maximum number of shares to trade
initial_amount: int

start money
transaction_cost_pct : float

transaction cost percentage per trade
reward_scaling: float

scaling factor for reward, good for training
tech_indicator_list: list

a list of technical indicator names (modified from config.py)
Methods

create_env_training()

create env class for training
create_env_validation()

create env class for validation
create_env_trading()

create env class for trading
"""

Initialize an environment class:

User-defined Environment: a simulation environment class.The environment for portfolio allocation:

1 import numpy as np
2 import pandas as pd
3 from gym.utils import seeding
4 import gym
5 from gym import spaces
6 import matplotlib
7 matplotlib.use('Agg')
8 import matplotlib.pyplot as plt
9

(continues on next page)

11.1. 1-Introduction 67

FinRL Documentation, Release 0.3.1

(continued from previous page)

10 class StockPortfolioEnv(gym.Env):
11 """A single stock trading environment for OpenAI gym
12 Attributes
13 ----------
14 df: DataFrame
15 input data
16 stock_dim : int
17 number of unique stocks
18 hmax : int
19 maximum number of shares to trade
20 initial_amount : int
21 start money
22 transaction_cost_pct: float
23 transaction cost percentage per trade
24 reward_scaling: float
25 scaling factor for reward, good for training
26 state_space: int
27 the dimension of input features
28 action_space: int
29 equals stock dimension
30 tech_indicator_list: list
31 a list of technical indicator names
32 turbulence_threshold: int
33 a threshold to control risk aversion
34 day: int
35 an increment number to control date
36 Methods
37 -------
38 _sell_stock()
39 perform sell action based on the sign of the action
40 _buy_stock()
41 perform buy action based on the sign of the action
42 step()
43 at each step the agent will return actions, then
44 we will calculate the reward, and return the next observation.
45 reset()
46 reset the environment
47 render()
48 use render to return other functions
49 save_asset_memory()
50 return account value at each time step
51 save_action_memory()
52 return actions/positions at each time step
53

54 """
55 metadata = {'render.modes': ['human']}
56

57 def __init__(self,
58 df,
59 stock_dim,
60 hmax,
61 initial_amount,

(continues on next page)

68 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

62 transaction_cost_pct,
63 reward_scaling,
64 state_space,
65 action_space,
66 tech_indicator_list,
67 turbulence_threshold,
68 lookback=252,
69 day = 0):
70 #super(StockEnv, self).__init__()
71 #money = 10 , scope = 1
72 self.day = day
73 self.lookback=lookback
74 self.df = df
75 self.stock_dim = stock_dim
76 self.hmax = hmax
77 self.initial_amount = initial_amount
78 self.transaction_cost_pct =transaction_cost_pct
79 self.reward_scaling = reward_scaling
80 self.state_space = state_space
81 self.action_space = action_space
82 self.tech_indicator_list = tech_indicator_list
83

84 # action_space normalization and shape is self.stock_dim
85 self.action_space = spaces.Box(low = 0, high = 1,shape = (self.action_space,))
86 # Shape = (34, 30)
87 # covariance matrix + technical indicators
88 self.observation_space = spaces.Box(low=0,
89 high=np.inf,
90 shape = (self.state_space+len(self.tech_

→˓indicator_list),
91 self.state_space))
92

93 # load data from a pandas dataframe
94 self.data = self.df.loc[self.day,:]
95 self.covs = self.data['cov_list'].values[0]
96 self.state = np.append(np.array(self.covs),
97 [self.data[tech].values.tolist() for tech in self.tech_indicator_

→˓list], axis=0)
98 self.terminal = False
99 self.turbulence_threshold = turbulence_threshold

100 # initalize state: inital portfolio return + individual stock return +␣
→˓individual weights

101 self.portfolio_value = self.initial_amount
102

103 # memorize portfolio value each step
104 self.asset_memory = [self.initial_amount]
105 # memorize portfolio return each step
106 self.portfolio_return_memory = [0]
107 self.actions_memory=[[1/self.stock_dim]*self.stock_dim]
108 self.date_memory=[self.data.date.unique()[0]]
109

110

(continues on next page)

11.1. 1-Introduction 69

FinRL Documentation, Release 0.3.1

(continued from previous page)

111 def step(self, actions):
112 # print(self.day)
113 self.terminal = self.day >= len(self.df.index.unique())-1
114 # print(actions)
115

116 if self.terminal:
117 df = pd.DataFrame(self.portfolio_return_memory)
118 df.columns = ['daily_return']
119 plt.plot(df.daily_return.cumsum(),'r')
120 plt.savefig('results/cumulative_reward.png')
121 plt.close()
122

123 plt.plot(self.portfolio_return_memory,'r')
124 plt.savefig('results/rewards.png')
125 plt.close()
126

127 print("=================================")
128 print("begin_total_asset:{}".format(self.asset_memory[0]))
129 print("end_total_asset:{}".format(self.portfolio_value))
130

131 df_daily_return = pd.DataFrame(self.portfolio_return_memory)
132 df_daily_return.columns = ['daily_return']
133 if df_daily_return['daily_return'].std() !=0:
134 sharpe = (252**0.5)*df_daily_return['daily_return'].mean()/ \
135 df_daily_return['daily_return'].std()
136 print("Sharpe: ",sharpe)
137 print("=================================")
138

139 return self.state, self.reward, self.terminal,{}
140

141 else:
142 #print(actions)
143 # actions are the portfolio weight
144 # normalize to sum of 1
145 norm_actions = (np.array(actions) - np.array(actions).min()) / (np.

→˓array(actions) - np.array(actions).min()).sum()
146 weights = norm_actions
147 #print(weights)
148 self.actions_memory.append(weights)
149 last_day_memory = self.data
150

151 #load next state
152 self.day += 1
153 self.data = self.df.loc[self.day,:]
154 self.covs = self.data['cov_list'].values[0]
155 self.state = np.append(np.array(self.covs), [self.data[tech].values.

→˓tolist() for tech in self.tech_indicator_list], axis=0)
156 # calcualte portfolio return
157 # individual stocks' return * weight
158 portfolio_return = sum(((self.data.close.values / last_day_memory.close.

→˓values)-1)*weights)
159 # update portfolio value

(continues on next page)

70 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

(continued from previous page)

160 new_portfolio_value = self.portfolio_value*(1+portfolio_return)
161 self.portfolio_value = new_portfolio_value
162

163 # save into memory
164 self.portfolio_return_memory.append(portfolio_return)
165 self.date_memory.append(self.data.date.unique()[0])
166 self.asset_memory.append(new_portfolio_value)
167

168 # the reward is the new portfolio value or end portfolo value
169 self.reward = new_portfolio_value
170 #self.reward = self.reward*self.reward_scaling
171

172

173 return self.state, self.reward, self.terminal, {}
174

175 def reset(self):
176 self.asset_memory = [self.initial_amount]
177 self.day = 0
178 self.data = self.df.loc[self.day,:]
179 # load states
180 self.covs = self.data['cov_list'].values[0]
181 self.state = np.append(np.array(self.covs), [self.data[tech].values.tolist()␣

→˓for tech in self.tech_indicator_list], axis=0)
182 self.portfolio_value = self.initial_amount
183 #self.cost = 0
184 #self.trades = 0
185 self.terminal = False
186 self.portfolio_return_memory = [0]
187 self.actions_memory=[[1/self.stock_dim]*self.stock_dim]
188 self.date_memory=[self.data.date.unique()[0]]
189 return self.state
190

191 def render(self, mode='human'):
192 return self.state
193

194 def save_asset_memory(self):
195 date_list = self.date_memory
196 portfolio_return = self.portfolio_return_memory
197 #print(len(date_list))
198 #print(len(asset_list))
199 df_account_value = pd.DataFrame({'date':date_list,'daily_return':portfolio_

→˓return})
200 return df_account_value
201

202 def save_action_memory(self):
203 # date and close price length must match actions length
204 date_list = self.date_memory
205 df_date = pd.DataFrame(date_list)
206 df_date.columns = ['date']
207

208 action_list = self.actions_memory
209 df_actions = pd.DataFrame(action_list)

(continues on next page)

11.1. 1-Introduction 71

FinRL Documentation, Release 0.3.1

(continued from previous page)

210 df_actions.columns = self.data.tic.values
211 df_actions.index = df_date.date
212 #df_actions = pd.DataFrame({'date':date_list,'actions':action_list})
213 return df_actions
214

215 def _seed(self, seed=None):
216 self.np_random, seed = seeding.np_random(seed)
217 return [seed]

Implement DRL Algorithms

FinRL uses a DRLAgent class to implement the algorithms.

class DRLAgent:
"""
Provides implementations for DRL algorithms

Attributes

env: gym environment class
user-defined class

Methods

train_PPO()
the implementation for PPO algorithm

train_A2C()
the implementation for A2C algorithm

train_DDPG()
the implementation for DDPG algorithm

train_TD3()
the implementation for TD3 algorithm

DRL_prediction()
make a prediction in a test dataset and get results

"""

Model Training:

We use A2C for portfolio allocation, because it is stable, cost-effective, faster and works better with large batch sizes.

Trading:Assume that we have $1,000,000 initial capital at 2019/01/01. We use the A2C model to perform portfolio
allocation of the Dow 30 stocks.

1 trade = data_split(df,'2019-01-01', '2020-12-01')
2

3 env_trade, obs_trade = env_setup.create_env_trading(data = trade,
4 env_class = StockPortfolioEnv)
5

6 df_daily_return, df_actions = DRLAgent.DRL_prediction(model=model_a2c,
7 test_data = trade,
8 test_env = env_trade,
9 test_obs = obs_trade)

72 Chapter 11. Tutorials Guide

FinRL Documentation, Release 0.3.1

image/portfolio_allocation_4.png

The output actions or the portfolio weights look like this:

image/portfolio_allocation_5.png

Backtesting Performance

FinRL uses a set of functions to do the backtesting with Quantopian pyfolio.

1 from pyfolio import timeseries
2 DRL_strat = backtest_strat(df_daily_return)
3 perf_func = timeseries.perf_stats
4 perf_stats_all = perf_func(returns=DRL_strat,
5 factor_returns=DRL_strat,
6 positions=None, transactions=None, turnover_denom="AGB")
7 print("==============DRL Strategy Stats===========")
8 perf_stats_all
9 print("==============Get Index Stats===========")

10 baesline_perf_stats=BaselineStats('^DJI',
11 baseline_start = '2019-01-01',
12 baseline_end = '2020-12-01')
13

14

15 # plot
16 dji, dow_strat = baseline_strat('^DJI','2019-01-01','2020-12-01')
17 import pyfolio
18 %matplotlib inline
19 with pyfolio.plotting.plotting_context(font_scale=1.1):
20 pyfolio.create_full_tear_sheet(returns = DRL_strat,
21 benchmark_rets=dow_strat, set_context=False)

The left table is the stats for backtesting performance, the right table is the stats for Index (DJIA) performance.

Plots:

11.1. 1-Introduction 73

FinRL Documentation, Release 0.3.1

11.2 2-Advance

11.3 3-Practical

11.4 4-Optimization

11.5 5-Others

74 Chapter 11. Tutorials Guide

CHAPTER

TWELVE

FILE ARCHITECTURE

FinRL’s file architecture strictly follow the Three-layer Architecture.

FinRL
finrl (the main folder)

applications
cryptocurrency_trading
high_frequency_trading
portfolio_allocation
stock_trading

agents
elegantrl
rllib
stablebaseline3

finrl_meta
data_processors
env_cryptocurrency_trading
env_portfolio_allocation
env_stock_trading
preprocessor
data_processor.py
finrl_meta_config.py

config.py
config_tickers.py
main.py
train.py
test.py
trade.py
plot.py

75

FinRL Documentation, Release 0.3.1

76 Chapter 12. File Architecture

CHAPTER

THIRTEEN

DEVELOPMENT SETUP WITH PYCHARM

This setup with pycharm makes it easy to work on all of AI4Finance-Foundation’s repositories simultaneously, while
allowing easy debugging, committing to the respective repo and creating PRs/MRs.

13.1 Step 1: Download Software

-Download and install Anaconda.

-Download and install PyCharm. The Community Edition (free version) offers everything you need except running
Jupyter notebooks. The Full-fledged Professional Edition offers everything. A workaround to run existing notebooks
in the Community edition is to copy all notebook cells into .py files. For notebook support, you can consider PyCharm
Professional Edition.

-On GitHub, fork FinRL to your private Github repo.

-On GitHub, fork ElegantRL to your private Github repo.

-On GitHub, fork FinRL-Meta to your private Github repo.

-All next steps happen on your local computer.

13.2 Step 2: Git Clone

mkdir ~/ai4finance
cd ~/ai4finance
git clone https://github.com/[your_github_username]/FinRL.git
git clone https://github.com/[your_github_username]/ElegantRL.git
git clone https://github.com/[your_github_username]/FinRL-Meta.git

13.3 Step 3: Create a Conda Environment

cd ~/ai4finance
conda create --name ai4finance python=3.8
conda activate ai4finance

cd FinRL
pip install -r requirements.txt

77

https://www.anaconda.com/
https://www.jetbrains.com/pycharm/
https://github.com/AI4Finance-Foundation/FinRL
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/FinRL-Meta

FinRL Documentation, Release 0.3.1

Install ElegantRL using requirements.txt, or open ElegantRL/setup.py in a text editor and pip install anything you can
find: gym, matplotlib, numpy, pybullet, torch, opencv-python, and box2d-py.

13.4 Step 4: Configure a PyCharm Project

-Launch PyCharm

-File > Open > [ai4finance project folder]

-At the bottom right of the status bar, change or add the interpreter to the ai4finance conda environment. Make sure
when you click the “terminal” bar at the bottom left, it shows ai4finance.

78 Chapter 13. Development setup with PyCharm

FinRL Documentation, Release 0.3.1

-At the left of the screen, in the project file tree:

• Right-click on the FinRL folder > Mark Directory as > Sources Root

• Right-click on the ElegantRL folder > Mark Directory as > Sources Root

• Right-click on the FinRL-Meta folder > Mark Directory as > Sources Root

13.4. Step 4: Configure a PyCharm Project 79

FinRL Documentation, Release 0.3.1

-Once you run a .py file, you will notice that you may still have some missing packages. In that case, simply pip install
them.

For example, we revise FinRL.

cd ~/ai4finance
cd ./FinRL
git checkout -b branch_xxx

where branch_xxx is a new branch name. In this branch, we revise config.py.

13.5 Step 5: Creating Commits and PRs/MRs

-Create commits as you usually do through PyCharm.

-Make sure that each commit covers only 1 of the 3 repo’s. Don’t create a commit that spans more than one repo, e.g.,
FinRL and ElegantRL.

-When you do a Git Push, PyCharm will ask you to which of the 3 repos you want to push. Just like the above figure,
we select the repo “FinRL”.

80 Chapter 13. Development setup with PyCharm

FinRL Documentation, Release 0.3.1

With respect to creating a pull request (PR) or merge quest (MR), please refer to Create a PR or Opensource Create a
PR.

13.5. Step 5: Creating Commits and PRs/MRs 81

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://opensource.com/article/19/7/create-pull-request-github
https://opensource.com/article/19/7/create-pull-request-github

FinRL Documentation, Release 0.3.1

82 Chapter 13. Development setup with PyCharm

CHAPTER

FOURTEEN

PUBLICATIONS

Papers by the Columbia research team can be found at Google Scholar.

83

https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=XsdPXocAAAAJ

FinRL Documentation, Release 0.3.1

Table 1: Publications
Title Conference Link Cita-

tions
Year

FinRL-Meta:
A Universe of
Near-Real Market
Environments for
Data-Driven Deep
Reinforcement
Learning in Quanti-
tative Finance

NeurIPS 2021
Data-Centric AI
Workshop

paper, code 2 2021

Explainable deep
reinforcement learn-
ing for portfolio
management: An
empirical approach

ICAIF 2021: ACM
International Con-
ference on AI in
Finance

paper, code 1 2021

FinRL-Podracer:
High performance
and scalable deep
reinforcement learn-
ing for quantitative
finance

ICAIF 2021: ACM
International Con-
ference on AI in
Finance

paper, code 2 2021

FinRL: Deep rein-
forcement learning
framework to au-
tomate trading in
quantitative finance

ICAIF 2021: ACM
International Con-
ference on AI in
Finance

paper, code 7 2021

FinRL: A deep
reinforcement
learning library
for automated
stock trading in
quantitative finance

NeurIPS 2020 Deep
RL Workshop

paper, code 25 2020

Deep reinforcement
learning for auto-
mated stock trading:
An ensemble strat-
egy

ICAIF 2020: ACM
International Con-
ference on AI in
Finance

paper, code 44 2020

Multi-agent rein-
forcement learning
for liquidation
strategy analysis

ICML 2019 Work-
shop on AI in Fi-
nance: Applications
and Infrastructure
for Multi-Agent
Learning

paper, code 19 2019

Practical deep rein-
forcement learning
approach for stock
trading

NeurIPS 2018
Workshop on
Challenges and Op-
portunities for AI in
Financial Services

paper, code 86 2018

84 Chapter 14. Publications

https://arxiv.org/abs/2112.06753
https://github.com/AI4Finance-Foundation/FinRL-Meta
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3958005
https://github.com/AI4Finance-Foundation/FinRL
https://arxiv.org/abs/2111.05188
https://github.com/AI4Finance-Foundation/FinRL_Podracer
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3955949
https://github.com/AI4Finance-Foundation/FinRL
https://arxiv.org/abs/2011.09607
https://github.com/AI4Finance-Foundation/FinRL
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3690996
https://github.com/AI4Finance-Foundation/Deep-Reinforcement-Learning-for-Automated-Stock-Trading-Ensemble-Strategy-ICAIF-2020
https://arxiv.org/abs/1906.11046
https://github.com/AI4Finance-Foundation/Liquidation-Analysis-using-Multi-Agent-Reinforcement-Learning-ICML-2019
https://arxiv.org/abs/1811.07522
https://github.com/AI4Finance-Foundation/DQN-DDPG_Stock_Trading

CHAPTER

FIFTEEN

EXTERNAL SOURCES

The following contents are collected and referred by AI4Finance community during the development of FinRL and
related projects. Some of them are educational and relatively easy while some others are professional and need advanced
knowledge. We appreciate and respect the effort of all these contents’ authors and developers.

15.1 Proof-of-concept

[1] FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance Deep reinforcement
learning framework to automate trading in quantitative finance, ACM International Conference on AI in Finance, ICAIF
2021.

[2] FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance A deep
reinforcement learning library for automated stock trading in quantitative finance, Deep RL Workshop, NeurIPS 2020.

[3] Practical deep reinforcement learning approach for stock trading. NeurIPS Workshop on Challenges and Opportu-
nities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy, 2018.

[4] Deep Reinforcement Learning for Trading. Zhang, Zihao, Stefan Zohren, and Stephen Roberts. The Journal of
Financial Data Science 2, no. 2 (2020): 25-40.

[5] A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem. Jiang, Zhengyao,
Dixing Xu, and Jinjun Liang. arXiv preprint arXiv:1706.10059 (2017).

15.2 DRL Algorithms/Libraries

[1] Documentation of ElegentRL by AI4Finance Foundation.

[2] Spinning Up in Deep RL by OpenAI.

15.3 Theory

[1] Deep Reinforcement Learning: An Overview Li, Yuxi. arXiv preprint arXiv:1701.07274 (2017).

[2] Continuous-time mean–variance portfolio selection: A reinforcement learning framework. Mathematical Finance,
30(4), pp.1273-1308. Wang, H. and Zhou, X.Y., 2020.

[3] Mao Guan and Xiao-Yang Liu. Explainable deep reinforcement learning for portfolio man- agement: An empirical
approach. ACM International Conference on AI in Finance, ICAIF 2021.

[4] ICAIF International Conference on AI in Finance.

85

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3955949
https://arxiv.org/abs/2011.09607
https://arxiv.org/abs/1811.07522
https://arxiv.org/abs/1911.10107
https://arxiv.org/abs/1706.10059
https://elegantrl.readthedocs.io
https://spinningup.openai.com/
https://arxiv.org/abs/1701.07274
https://ai-finance.org

FinRL Documentation, Release 0.3.1

15.4 Trading Strategies

[1] Deep reinforcement learning for automated stock trading: an ensemble strategy. ACM International Conference on
AI in Finance, 2020.

[2] FinRL-Podracer: High performance and scalable deep reinforcement learning for quantitative finance. ACM Inter-
national Conference on AI in Finance, ICAIF 2021.

[3] Multi-agent reinforcement learning for liquidation strategy analysis, paper and codes. Workshop on Applications
and Infrastructure for Multi-Agent Learning, ICML 2019.

[4] Risk-Sensitive Reinforcement Learning: a Martingale Approach to Reward Uncertainty. International Conference
on AI in Finance, ICAIF 2020.

[5] Cryptocurrency Trading Using Machine Learning. Journal of Risk and Financial Management, August 2020.

[6] Multi-Agent Reinforcement Learning in a Realistic Limit Order Book Market Simulation. Michaël Karpe, Jin Fang,
Zhongyao Ma, Chen Wang. International Conference on AI in Finance (ICAIF’20), September 2020.

[7] Market Making via Reinforcement Learning. Thomas Spooner, John Fearnley, Rahul Savani, Andreas Koukorinis.
AAMAS2018 Conference Proceedings

[8] Financial Trading as a Game: A Deep Reinforcement Learning Approach Huang, Chien Yi. arXiv preprint
arXiv:1807.02787 (2018).

[9] Deep Hedging: Hedging Derivatives Under Generic Market Frictions Using Reinforcement Learning Buehler,
Hans, Lukas Gonon, Josef Teichmann, Ben Wood, Baranidharan Mohan, and Jonathan Kochems. Swiss Finance Insti-
tute Research Paper 19-80 (2019).

15.5 Financial Big Data

[1] FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in
Quantitative Finance. NeurIPS 2021 Data-Centric AI Workshop

15.6 Interpretation and Explainability

[1] Explainable Deep Reinforcement Learning for Portfolio Management: An Empirical Approach. Guan, M. and Liu,
X.Y.. ACM International Conference on AI in Finance, 2021.

15.7 Tools or Softwares

[1] FinRL by AI4Finance Foundation.

[2] FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in
Quantitative Finance, by AI4Finance Foundation.

[3] ElegantRL: a DRL library developed by AI4Finance Foundation.

[4] Stable-Baselines3: Reliable Reinforcement Learning Implementations.

86 Chapter 15. External Sources

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3690996
https://arxiv.org/abs/2111.05188
https://arxiv.org/abs/1906.11046
https://github.com/WenhangBao/Multi-Agent-RL-for-Liquidation
https://arxiv.org/abs/2006.12686
https://www.mdpi.com/1911-8074/13/8/178
https://arxiv.org/abs/2006.05574
https://arxiv.org/abs/1804.04216
https://arxiv.org/abs/1807.02787
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3355706
https://arxiv.org/abs/2112.06753
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3958005%3B
https://github.com/AI4Finance-Foundation/FinRL
https://github.com/AI4Finance-Foundation/FinRL-Meta
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/DLR-RM/stable-baselines3

FinRL Documentation, Release 0.3.1

15.8 Survey

[1] Recent Advances in Reinforcement Learning in Finance. Hambly, B., Xu, R. and Yang, H., 2021.

[2] Deep Reinforcement Learning for Trading—A Critical Survey. Adrian Millea, 2021.

[3] Modern Perspectives on Reinforcement Learning in Finance Kolm, Petter N. and Ritter, Gordon. The Journal of
Machine Learning in Finance, Vol. 1, No. 1, 2020.

[4] Reinforcement Learning in Economics and Finance Charpentier, Arthur, Romuald Elie, and Carl Remlinger. Com-
putational Economics (2021): 1-38.

[5] Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics Mosavi, Amirho-
sein, Yaser Faghan, Pedram Ghamisi, Puhong Duan, Sina Faizollahzadeh Ardabili, Ely Salwana, and Shahab S. Band.
Mathematics 8, no. 10 (2020): 1640.

15.9 Education

[1] Coursera Overview of Advanced Methods of Reinforcement Learning in Finance. By Igor Halperin, at NYU.

[2] Foundations of reinforcement learning with applications in finance by Ashwin Rao, Tikhon Jelvis, Stanford Uni-
versity

15.8. Survey 87

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3971071
https://www.mdpi.com/2306-5729/6/11/119
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3449401
https://arxiv.org/abs/2003.10014
https://www.mdpi.com/2227-7390/8/10/1640
https://www.coursera.org/learn/advanced-methods-reinforcement-learning-finance
https://stanford.edu/~ashlearn/RLForFinanceBook/book.pdf

FinRL Documentation, Release 0.3.1

88 Chapter 15. External Sources

CHAPTER

SIXTEEN

FAQ

Version
0.3

Date
05-29-2022

Contributors
Roberto Fray da Silva, Xiao-Yang Liu, Ziyi Xia, Ming Zhu

This document contains the most frequently asked questions related to FinRL, which are based on questions posted on
the slack channels and Github issues.

16.1 Outline

• 1-Inputs and datasets

• 2-Code and implementation

• 3-Model evaluation

• 4-Miscellaneous

• 5-Common issues/bugs

16.2 1-Inputs and datasets

•

Not yet. We’re developing this functionality

•

Not yet. We’re developing this functionality

•

Not yet. We’re developing this functionality

•

Not yet

•

Yahoo Finance (through the yfinance library)

89

https://github.com/AI4Finance-Foundation/FinRL

FinRL Documentation, Release 0.3.1

•

Yahoo Finance (only up to last 7 days), through the yfinance library. It is the only option besides
scraping (or paying for a service provider)

•

No, as this is more of an execution strategy related to risk control. You can use it as part of your
system, adding the risk control part as a separate component

•

Yes, you can add it. Remember to check on the code that this additional feature is being fed to the
model (state)

•

No, you’ll have to use a paid service or library/code to scrape news and obtain the sentiment from
them (normally, using deep learning and NLP)

16.3 2-Code and implementation

•

Yes, it does

•

Yes, because the current parameters are defined for daily data. You’ll have to tune the model
for intraday trading

•

Not many yet, but we’re working on providing different reward functions and an easy way
to set your own reward function

•

Yes, but none is available at the moment. Sometimes in the literature you’ll find this referred
to as transfer learning

•

Each model has its own hyperparameters, but the most important is the total_timesteps
(think of it as epochs in a neural network: even if all the other hyperparameters are optimal,
with few epochs the model will have a bad performance). The other important hyperparam-
eters, in general, are: learning_rate, batch_size, ent_coef, buffer_size, policy, and reward
scaling

•

There are several, such as: Ray Tune and Optuna. You can start from our examples in the
tutorials

•

We suggest using ElegantRL or Stable Baselines 3. We tested the following models with suc-
cess: A2C, A3C, DDPG, PPO, SAC, TD3, TRPO. You can also create your own algorithm,
with an OpenAI Gym-style market environment

•

90 Chapter 16. FAQ

FinRL Documentation, Release 0.3.1

Please update to latest version (https://github.com/AI4Finance-LLC/FinRL-Library), check
if the hyperparameters used were not outside a normal range (ex: learning rate too high),
and run the code again. If you still have problems, please check Section 2 (What to do when
you experience problems)

• raw-html
What to do when you experience problems?

1. Check if it is not already answered on this FAQ 2. Check if it is posted on the GitHub repo issues. If
not, welcome to submit an issue on GitHub 3. Use the correct channel on the AI4Finance slack or Wechat
group.*

• raw-html
Does anyone know if there is a trading environment for a
single stock? There is one in the docs, but the collab link seems to be broken.

We did not update the single stock for long time. The performance for single stock is not
very good, since the state space is too small so that the agent extract little information
from the environment. Please use the multi stock environment, and after training only
use the single stock to trade.

16.4 3-Model evaluation

•

Not exactly. Depending on the period, the asset, the model chosen, and the hyperparameters used, BH
may be very difficult to beat (it’s almost never beaten on stocks/periods with low volatility and steady
growth). Nevertheless, update the library and its dependencies (the github repo has the most recent
version), and check the example notebook for the specific environment type (single, multi, portfolio
optimization) to see if the code is running correctly

•

We use the Pyfolio backtest library from Quantopian (https://github.com/quantopian/pyfolio), espe-
cially the simple tear sheet and its charts. In general, the most important metrics are: annual returns,
cumulative returns, annual volatility, sharpe ratio, calmar ratio, stability, and max drawdown

•

There are several metrics, but we recommend the following, as they are the most used in the market:
annual returns, cumulative returns, annual volatility, sharpe ratio, calmar ratio, stability, and max
drawdown

•

We recommend using buy and hold (BH), as it is a strategy that can be followed on any market and
tends to provide good results in the long run. You can also compare with other DRL models and
trading strategies such as the minimum variance portfolio

16.4. 3-Model evaluation 91

https://github.com/AI4Finance-LLC/FinRL-Library/issues

FinRL Documentation, Release 0.3.1

16.5 4-Miscellaneous

•

1. Read the documentation from the very beginning 2. Go through * `tutorials
<https://github.com/AI4Finance-Foundation/FinRL/tree/master/tutorials>`_ *3. read our papers

•

This is available on our Github repo https://github.com/AI4Finance-LLC/FinRL-Library

•

Participate on the slack channels, check the current issues and the roadmap, and help
any way you can (sharing the library with others, testing the library of different mar-
kets/models/strategies, contributing with code development, etc)

•

Please read 1-Inputs and datasets

•

Please read 4-Miscellaneous

•

Please check our development roadmap at our Github repo:
https://github.com/AI4Finance-LLC/FinRL-Library

•

FinRL aims for education and demonstration, while FinRL-Meta aims for building financial
big data and a metaverse of data-driven financial RL.

16.6 5-Common issues/bugs

• Package trading_calendars reports errors in Windows system:
Trading_calendars is not maintained now. It may report errors in Windows system (python>=3.7). These
are two possible solutions: 1). Use python=3.6 environment. 2). Replace trading_calendars with ex-
change_caldenars.

92 Chapter 16. FAQ

https://github.com/AI4Finance-LLC/FinRL-Library

	Introduction
	First Glance
	Three-layer Architecture
	1. Stock Market Environments
	2. DRL Agents
	ElegantRL: DRL library

	3. Applications

	Installation
	MAC OS
	Step 1: Install Anaconda
	Step 2: Install Homebrew
	Step 3: Install OpenAI
	Step 4: Install FinRL
	Step 5: Run FinRL

	Ubuntu
	Step 1: Install Anaconda
	Step 2: Install OpenAI
	Step 3: Install FinRL
	Step 4: Run FinRL

	Windows 10
	Prepare for install
	Step1: Clone FinRL
	Step2: install dependencies
	Step3: test (If using YahooFinance in China, VPN is needed)
	Tips for running error

	Windows 10 (wsl install)
	Step 1: Install Ubuntu on Windows 10
	Step 2: Install Anaconda
	Step 3: Install OpenAI
	Step 4: Install FinRL
	Step 5: Run FinRL

	Quick Start
	Background
	Dataset: Financial Big Data
	Benchmark
	DataOps

	Overview
	1. Supported trading tasks:
	2. Training-testing-trading pipeline:
	3. DataOps for data-driven financial reinforcement leanring
	4. Layered structure and extensibility
	5. Plug-and-play

	Data Layer
	Data Accessing
	Data Cleaning
	Feature Engineering

	Environment Layer
	Benchmark
	Performance Metrics
	Experiment Settings

	Tutorials Guide
	1-Introduction
	Single Stock Trading
	Step 1: Preparation
	Step 2: Download Data
	Step 3: Preprocess Data
	Step 4: Build Environment
	Step 5: Implement DRL Algorithms
	Step 6: Model Training
	Step 7: Backtest Our Strategy

	Multiple Stock Trading
	Step 1: Preparation
	Step 2: Download Data
	Step 3: Preprocess Data
	Step 4: Design Environment
	Step 5: Implement DRL Algorithms
	Step 6: Backtest Our Strategy

	Portfolio Allocation
	Overview
	Problem Definition
	Load Python Packages
	Download Data
	Preprocess Data
	Build Environment
	Implement DRL Algorithms
	Backtesting Performance

	2-Advance
	3-Practical
	4-Optimization
	5-Others

	File Architecture
	Development setup with PyCharm
	Step 1: Download Software
	Step 2: Git Clone
	Step 3: Create a Conda Environment
	Step 4: Configure a PyCharm Project
	Step 5: Creating Commits and PRs/MRs

	Publications
	External Sources
	Proof-of-concept
	DRL Algorithms/Libraries
	Theory
	Trading Strategies
	Financial Big Data
	Interpretation and Explainability
	Tools or Softwares
	Survey
	Education

	FAQ
	Outline
	1-Inputs and datasets
	2-Code and implementation
	3-Model evaluation
	4-Miscellaneous
	5-Common issues/bugs

