
FinRL Documentation
Release 0.3.1

FinRL

Mar 03, 2023

CONTENTS

1 Introduction 3

2 First Glance 5

3 Three-layer Architecture 7

4 Installation 13

5 Quick Start 19

6 Background 23

7 Overview 25

8 Data Layer 29

9 Environment Layer 33

10 Benchmark 35

11 Tutorials Guide 37

12 File Architecture 41

13 Development Guide 43

14 Contributing Guidelines 49

15 Publications 51

16 External Sources 53

17 FAQ 57

i

ii

FinRL Documentation, Release 0.3.1

Disclaimer: Nothing herein is financial advice, and NOT a recommendation to trade real money. Please use
common sense and always first consult a professional before trading or investing.
AI4Finance community provides this demonstrative and educational resource, in order to efficiently automate trading.
FinRL is the first open source framework for financial reinforcement learning.

Reinforcement learning (RL) trains an agent to solve tasks by trial and error, while DRL uses deep neural networks as
function approximators. DRL balances exploration (of uncharted territory) and exploitation (of current knowledge),
and has been recognized as a competitive edge for automated trading. DRL framework is powerful in solving dynamic
decision making problems by learning through interactions with an unknown environment, thus exhibiting two major
advantages: portfolio scalability and market model independence. Automated trading is essentially making dynamic
decisions, namely to decide where to trade, at what price, and what quantity, over a highly stochastic and complex
stock market. Taking many complex financial factors into account, DRL trading agents build a multi-factor model and
provide algorithmic trading strategies, which are difficult for human traders.

FinRL provides a framework that supports various markets, SOTA DRL algorithms, benchmarks of many quant finance
tasks, live trading, etc.

Join or discuss FinRL with us: AI4Finance mailing list.

Feel free to leave us feedback: report bugs using Github issues or discuss FinRL development in the Slack Channel.

CONTENTS 1

https://github.com/AI4Finance-Foundation/FinRL
https://github.com/AI4Finance-Foundation/FinRL
https://groups.google.com/u/1/g/ai4finance
https://github.com/AI4Finance-LLC/FinRL-Library/issues
https://join.slack.com/t/ai4financeworkspace/shared_invite/zt-jyaottie-hHqU6TdvuhMHHAMXaLw_~w

FinRL Documentation, Release 0.3.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

Table of Contents

• Introduction

Design Principles
• Plug-and-Play (PnP): modularity; handle different markets (say T0 vs. T+1).

• Completeness and universal: multiple markets; various data sources (APIs, Excel, etc); user-friendly variables.

• Avoid hard-coded parameters.

• Closing the sim-real gap using the “training-testing-trading” pipeline: simulation for training and connecting
real-time APIs for testing/trading.

• Efficient data sampling: accelerate the data sampling process is the key to DRL training! From the ElegantRL
project. We know that multi-processing is powerful to reduce the training time (scheduling between CPU +
GPU).

• Transparency: a virtual env that is invisible to the upper layer.

• Flexibility and extensibility: inheritance might be helpful here.

Contributions
• FinRL is an open source framework for financial reinforcement learning. Trading environments incorporating

market frictions are provided.

• Trading tasks accompanied by hands-on tutorials are available in a beginner-friendly and reproducible fashion.
Customization is feasible.

• FinRL has good scalability, with fine-tuned state-of-the-art DRL algorithms. Adjusting the implementations to
the rapid changing stock market is well supported.

• Typical use cases are selected to establish benchmarks for the quantitative finance community. Standard back-
testing and evaluation metrics are also provided for easy and effective performance evaluation.

With FinRL library, the implementation of powerful DRL trading strategies becomes more accessible, efficient and
delightful.

3

FinRL Documentation, Release 0.3.1

4 Chapter 1. Introduction

CHAPTER

TWO

FIRST GLANCE

To quickly understand what is FinRL and how it works, you can go through the series Stock_NeurIPS2018, including
Stock_NeurIPS2018_Data.ipynb, Stock_NeurIPS2018_Train.ipynb, Stock_NeurIPS2018_Backtest.ipynb in our exam-
ples directory (https://github.com/AI4Finance-Foundation/FinRL/tree/master/examples)

This is how we use Deep Reinforcement Learning for Stock Trading from scratch.

Tip: Run the code step by step at Google Colab.

The notebook and the following result is based on our paper Practical deep reinforcement learning approach for stock
trading Xiong, Zhuoran, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar Walid. “Practical deep reinforce-
ment learning approach for stock trading.” arXiv preprint arXiv:1811.07522 (2018).

5

https://github.com/AI4Finance-Foundation/FinRL/tree/master/examples
https://colab.research.google.com/github/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/Stock_NeurIPS2018_SB3.ipynb

FinRL Documentation, Release 0.3.1

6 Chapter 2. First Glance

CHAPTER

THREE

THREE-LAYER ARCHITECTURE

After the first glance of how to establish our task on stock trading using DRL, know we are introducing the most central
idea of FinRL.

FinRL library consists of three layers: market environments (FinRL-Meta), DRL agents and applications. The
lower layer provides APIs for the upper layer, making the lower layer transparent to the upper layer. The agent layer
interacts with the environment layer in an exploration-exploitation manner, whether to repeat prior working-well deci-
sions or to make new actions hoping to get greater cumulative rewards.

Our construction has following advantages:

Modularity: Each layer includes several modules and each module defines a separate function. One can select certain
modules from a layer to implement his/her stock trading task. Furthermore, updating existing modules is possible.

Simplicity, Applicability and Extendibility: Specifically designed for automated stock trading, FinRL presents DRL
algorithms as modules. In this way, FinRL is made accessible yet not demanding. FinRL provides three trading tasks
as use cases that can be easily reproduced. Each layer includes reserved interfaces that allow users to develop new
modules.

Better Market Environment Modeling: We build a trading simulator that replicates live stock markets and provides
backtesting support that incorporates important market frictions such as transaction cost, market liquidity and the
investor’s degree of risk-aversion. All of those are crucial among key determinants of net returns.

A high level view of how FinRL construct the problem in DRL:

7

FinRL Documentation, Release 0.3.1

Please refer to the following pages for more specific explanation:

3.1 1. Stock Market Environments

Considering the stochastic and interactive nature of the automated stock trading tasks, a financial task is modeled as a
Markov Decision Process (MDP) problem. FinRL-Meta first preprocesses the market data, and then builds stock market
environments. The environemnt observes the change of stock price and multiple features, and the agent takes an action
and receives the reward from the environment, and finally the agent adjusts its strategy accordingly. By interacting with
the environment, the smart agent will derive a trading strategy to maximize the long-term accumulated rewards (also
named as Q-value).

Our trading environments, based on OpenAI Gym, simulate the markets with real market data, using time-driven
simulation. FinRL library strives to provide trading environments constructed by datasets across many stock exchanges.

In the Tutorials and Examples section, we will illustrate the detailed MDP formulation with the components of the
reinforcement learning environment.

The application of DRL in finance is different from that in other fields, such as playing chess and card games; the latter
inherently have clearly defined rules for environments. Various finance markets require different DRL algorithms to get
the most appropriate automated trading agent. Realizing that setting up a training environment is time-consuming and
laborious work, FinRL provides market environments based on representative listings, including NASDAQ-100, DJIA,
S&P 500, SSE 50, CSI 300, and HSI, plus a user-defined environment. Thus, this library frees users from tedious and
time-consuming data pre-processing workload. We know that users may want to train trading agents on their own data
sets. FinRL library provides convenient support to user-imported data and allows users to adjust the granularity of time
steps. We specify the format of the data. According to our data format instructions, users only need to pre-process their
data sets.

8 Chapter 3. Three-layer Architecture

FinRL Documentation, Release 0.3.1

We follow the DataOps paradigm in the data layer.

• We establish a standard pipeline for financial data engineering in RL, ensuring data of different formats from
different sources can be incorporated in a unified framework.

• We automate this pipeline with a data processor, which can access data, clean data, and extract features from
various data sources with high quality and efficiency. Our data layer provides agility to model deployment.

• We employ a training-testing-trading pipeline. The DRL agent first learns from the training environment
and is then validated in the validation environment for further adjustment. Then the validated agent is tested
in historical datasets. Finally, the tested agent will be deployed in paper trading or live trading markets. First,
this pipeline solves the information leakage problem because the trading data are never leaked when adjusting
agents. Second, a unified pipeline allows fair comparisons among different algorithms and strategies.

For data processing and building environment for DRL in finance, AI4Finance has maintained another project: FinRL-
Meta.

3.2 2. DRL Agents

FinRL contains fine-tuned standard DRL algorithms in ElegantRL, Stable Baseline 3, and RLlib. ElegantRL is a
scalable and elastic DRL library that maintained by AI4Finance, with faster and more stable performance than Stable
Baseline 3 and RLlib. In the Three-Layer Architecture section, there will be detailed explanation about how ElegantRL
accomplish its role in FinRL perfectly. If interested, please refer to ElegantRL’s GitHub page or documentation.

With those three powerful DRL libraries, FinRL provides the following algorithms for users:

3.2. 2. DRL Agents 9

https://github.com/AI4Finance-Foundation/FinRL-Meta
https://github.com/AI4Finance-Foundation/FinRL-Meta
https://github.com/AI4Finance-Foundation/ElegantRL
https://elegantrl.readthedocs.io

FinRL Documentation, Release 0.3.1

start/image/alg_compare.png

As mentioned in the introduction, FinRL’s DRL agents are built by fine-tuned standard DRL algorithms depending on
three famous DRL library: ElegantRL, Stable Baseline 3, and RLlib.

The supported algorithms include: DQN, DDPG, Multi-Agent DDPG, PPO, SAC, A2C and TD3. We also allow users
to design their own DRL algorithms by adapting these DRL algorithms, e.g., Adaptive DDPG, or employing ensemble
methods. The comparison of DRL algorithms is shown in the table bellow:

Users are able to choose their favorite DRL agents for training. Different DRL agents might have different performance
in various tasks.

3.2.1 ElegantRL: DRL library

One sentence summary of reinforcement learning (RL): in RL, an agent learns by continuously interacting with an
unknown environment, in a trial-and-error manner, making sequential decisions under uncertainty and achieving a
balance between exploration (new territory) and exploitation (using knowledge learned from experiences).

Deep reinforcement learning (DRL) has great potential to solve real-world problems that are challenging to humans,
such as gaming, natural language processing (NLP), self-driving cars, and financial trading. Starting from the success

10 Chapter 3. Three-layer Architecture

https://github.com/AI4Finance-Foundation/ElegantRL

FinRL Documentation, Release 0.3.1

of AlphaGo, various DRL algorithms and applications are emerging in a disruptive manner. The ElegantRL library
enables researchers and practitioners to pipeline the disruptive “design, development and deployment” of DRL tech-
nology.

The library to be presented is featured with “elegant” in the following aspects:

• Lightweight: core codes have less than 1,000 lines, e.g., helloworld.

• Efficient: the performance is comparable with Ray RLlib.

• Stable: more stable than Stable Baseline 3.

ElegantRL supports state-of-the-art DRL algorithms, including discrete and continuous ones, and provides user-
friendly tutorials in Jupyter notebooks. The ElegantRL implements DRL algorithms under the Actor-Critic framework,
where an Agent (a.k.a, a DRL algorithm) consists of an Actor network and a Critic network. Due to the completeness
and simplicity of code structure, users are able to easily customize their own agents.

Please refer to ElegantRL’s GitHub page or documentation for more details.

3.3 3. Applications

3.3. 3. Applications 11

https://github.com/AI4Finance-Foundation/ElegantRL
https://elegantrl.readthedocs.io

FinRL Documentation, Release 0.3.1

12 Chapter 3. Three-layer Architecture

CHAPTER

FOUR

INSTALLATION

4.1 MAC OS

4.1.1 Step 1: Install Anaconda

-Download Anaconda Installer, Anaconda has everything you need for Python programming.

-Follow Anaconda’s instruction: macOS graphical install, to install the newest version of Anaconda.

-Open your terminal and type: ‘which python’, it should show:

/Users/your_user_name/opt/anaconda3/bin/python

It means that your Python interpreter path has been pinned to Anaconda’s python version. If it shows something like
this:

/Users/your_user_name/opt/anaconda3/bin/python

It means that you still use the default python path, you either fix it and pin it to the anaconda path (try this blog), or you
can use Anaconda Navigator to open a terminal manually.

4.1.2 Step 2: Install Homebrew

-Open a terminal and make sure that you have installed Anaconda.

-Install Homebrew:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/
→˓install.sh)"

4.1.3 Step 3: Install OpenAI

Installation of system packages on Mac requires Homebrew. With Homebrew installed, run the following in your
terminal:

brew install cmake openmpi

13

https://www.anaconda.com/products/individual#macos
https://docs.anaconda.com/anaconda/install/mac-os/
https://towardsdatascience.com/how-to-successfully-install-anaconda-on-a-mac-and-actually-get-it-to-work-53ce18025f97

FinRL Documentation, Release 0.3.1

4.1.4 Step 4: Install FinRL

Since we are still actively updating the FinRL repository, please install the unstable development version of FinRL
using pip:

pip install git+https://github.com/AI4Finance-Foundation/FinRL.git

4.1.5 Step 5: Install box2d (if using box2d)

Users can try:

brew install swig
pip install box2d-py
pip install box2d
pip install Box2D

If it raises errors “AttributeError: module ‘_Box2D’ has no attribute ‘RAND_LIMIT_swigconstant’ “, users can try:

pip install box2d box2d-kengz

4.1.6 Step 6: Run FinRL

Download the FinRL repository either use terminal:

git clone https://github.com/AI4Finance-Foundation/FinRL.git

or download it manually

Open Jupyter Notebook through Anaconda Navigator and locate one of the stock trading notebook in FinRL/tutorials
you just downloaded. You should be able to run it.

14 Chapter 4. Installation

FinRL Documentation, Release 0.3.1

4.2 Ubuntu

4.2.1 Step 1: Install Anaconda

Please follow the steps in this blog

4.2.2 Step 2: Install OpenAI

Open an ubuntu terminal and type:

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev␣
→˓libgl1-mesa-glx swig

4.2.3 Step 3: Install FinRL

Since we are still actively updating the FinRL repository, please install the unstable development version of FinRL
using pip:

pip install git+https://github.com/AI4Finance-Foundation/FinRL.git

4.2.4 Step 4: Install box2d (if using box2d)

4.2.5 Step 5: Run FinRL

Download the FinRL repository in terminal:

git clone https://github.com/AI4Finance-Foundation/FinRL.git

Open Jupyter Notebook by typing ‘jupyter notebook’ in your ubuntu terminal.

Locate one of the stock trading notebook in FinRL/tutorials you just downloaded. You should be able to run it.

4.3 Windows 10

4.3.1 Prepare for install

1. VPN is needed if using YahooFinance in china (pyfolio, elegantRL pip dependencies need pull code, YahooFi-
nance has stopped the service in china). Othewise, please ignore it.

2. python version >=3.7

3. pip remove zipline, if your system has installed zipline, zipline has conflicts with the FinRL.

4.2. Ubuntu 15

https://linuxize.com/post/how-to-install-anaconda-on-ubuntu-18-04/

FinRL Documentation, Release 0.3.1

4.3.2 Step 1: Clone FinRL

git clone https://github.com/AI4Finance-Foundation/FinRL.git

4.3.3 Step 2: install dependencies

cd FinRL
pip install .

4.3.4 Step 3: Install box2d (if using box2d)

4.3.5 Step 4: test (If using YahooFinance in China, VPN is needed)

python Stock_NeurIPS2018.py

4.3.6 Tips for running error

If the following outputs appear, take it easy, since installation is still successful.

1. UserWarning: Module “zipline.assets” not found; multipliers will not be applied to position notionals. Module
“zipline.assets” not found; multipliers will not be applied’

If following outputs appear, please ensure that VPN helps to access the YahooFinance

1. Failed download: xxxx: No data found for this date range, the stock may be delisted, or the value is missing.

4.4 Windows 10 (wsl install)

4.4.1 Step 1: Install Ubuntu on Windows 10

Please check this video for detailed steps:

4.4.2 Step 2: Install Anaconda

Please follow the steps in this blog

4.4.3 Step 3: Install OpenAI

Open an ubuntu terminal and type:

sudo apt-get update && sudo apt-get install cmake libopenmpi-dev python3-dev zlib1g-dev␣
→˓libgl1-mesa-glx

16 Chapter 4. Installation

https://linuxize.com/post/how-to-install-anaconda-on-ubuntu-18-04/

FinRL Documentation, Release 0.3.1

4.4.4 Step 4: Install FinRL

Since we are still actively updating the FinRL repository, please install the unstable development version of FinRL
using pip:

pip install git+https://github.com/AI4Finance-Foundation/FinRL.git

4.4.5 Step 5: Install box2d (if using box2d)

4.4.6 Step 6: Run FinRL

Download the FinRL repository in terminal:

git clone https://github.com/AI4Finance-Foundation/FinRL.git

Open Jupyter Notebook by typing ‘jupyter notebook’ in your ubuntu terminal. Please see jupyter notebook

Locate one of the stock trading notebook in FinRL/tutorials you just downloaded. You should be able to run it.

4.4. Windows 10 (wsl install) 17

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/execute.html

FinRL Documentation, Release 0.3.1

18 Chapter 4. Installation

CHAPTER

FIVE

QUICK START

Open main.py

1 import os
2 from typing import List
3 from argparse import ArgumentParser
4 from finrl import config
5 from finrl.config_tickers import DOW_30_TICKER
6 from finrl.config import (
7 DATA_SAVE_DIR,
8 TRAINED_MODEL_DIR,
9 TENSORBOARD_LOG_DIR,

10 RESULTS_DIR,
11 INDICATORS,
12 TRAIN_START_DATE,
13 TRAIN_END_DATE,
14 TEST_START_DATE,
15 TEST_END_DATE,
16 TRADE_START_DATE,
17 TRADE_END_DATE,
18 ERL_PARAMS,
19 RLlib_PARAMS,
20 SAC_PARAMS,
21 ALPACA_API_KEY,
22 ALPACA_API_SECRET,
23 ALPACA_API_BASE_URL,
24)
25

26 # construct environment
27 from finrl.meta.env_stock_trading.env_stocktrading_np import StockTradingEnv
28

29

30 def build_parser():
31 parser = ArgumentParser()
32 parser.add_argument(
33 "--mode",
34 dest="mode",
35 help="start mode, train, download_data" " backtest",
36 metavar="MODE",
37 default="train",
38)

(continues on next page)

19

FinRL Documentation, Release 0.3.1

(continued from previous page)

39 return parser
40

41

42 # "./" will be added in front of each directory
43 def check_and_make_directories(directories: List[str]):
44 for directory in directories:
45 if not os.path.exists("./" + directory):
46 os.makedirs("./" + directory)
47

48

49

50 def main():
51 parser = build_parser()
52 options = parser.parse_args()
53 check_and_make_directories([DATA_SAVE_DIR, TRAINED_MODEL_DIR, TENSORBOARD_LOG_DIR,␣

→˓RESULTS_DIR])
54

55 if options.mode == "train":
56 from finrl import train
57

58 env = StockTradingEnv
59

60 # demo for elegantrl
61 kwargs = {} # in current meta, with respect yahoofinance, kwargs is {}. For␣

→˓other data sources, such as joinquant, kwargs is not empty
62 train(
63 start_date=TRAIN_START_DATE,
64 end_date=TRAIN_END_DATE,
65 ticker_list=DOW_30_TICKER,
66 data_source="yahoofinance",
67 time_interval="1D",
68 technical_indicator_list=INDICATORS,
69 drl_lib="elegantrl",
70 env=env,
71 model_name="ppo",
72 cwd="./test_ppo",
73 erl_params=ERL_PARAMS,
74 break_step=1e5,
75 kwargs=kwargs,
76)
77 elif options.mode == "test":
78 from finrl import test
79 env = StockTradingEnv
80

81 # demo for elegantrl
82 kwargs = {} # in current meta, with respect yahoofinance, kwargs is {}. For␣

→˓other data sources, such as joinquant, kwargs is not empty
83

84 account_value_erl = test(
85 start_date=TEST_START_DATE,
86 end_date=TEST_END_DATE,
87 ticker_list=DOW_30_TICKER,

(continues on next page)

20 Chapter 5. Quick Start

FinRL Documentation, Release 0.3.1

(continued from previous page)

88 data_source="yahoofinance",
89 time_interval="1D",
90 technical_indicator_list=INDICATORS,
91 drl_lib="elegantrl",
92 env=env,
93 model_name="ppo",
94 cwd="./test_ppo",
95 net_dimension=512,
96 kwargs=kwargs,
97)
98 elif options.mode == "trade":
99 from finrl import trade

100 env = StockTradingEnv
101 kwargs = {}
102 trade(
103 start_date=TRADE_START_DATE,
104 end_date=TRADE_END_DATE,
105 ticker_list=DOW_30_TICKER,
106 data_source="yahoofinance",
107 time_interval="1D",
108 technical_indicator_list=INDICATORS,
109 drl_lib="elegantrl",
110 env=env,
111 model_name="ppo",
112 API_KEY=ALPACA_API_KEY,
113 API_SECRET=ALPACA_API_SECRET,
114 API_BASE_URL=ALPACA_API_BASE_URL,
115 trade_mode='backtesting',
116 if_vix=True,
117 kwargs=kwargs,
118)
119 else:
120 raise ValueError("Wrong mode.")
121

122

123 ## Users can input the following command in terminal
124 # python main.py --mode=train
125 # python main.py --mode=test
126 # python main.py --mode=trade
127 if __name__ == "__main__":
128 main()

Run the library:

python main.py --mode=train # if train. Use DOW_30_TICKER by default.
python main.py --mode=test # if test. Use DOW_30_TICKER by default.
python main.py --mode=trade # if trade. Users should input your alpaca parameters in␣
→˓config.py

Choices for --mode: start mode, train, download_data, backtest

21

FinRL Documentation, Release 0.3.1

22 Chapter 5. Quick Start

CHAPTER

SIX

BACKGROUND

6.1 Why FinRL-Meta?

Finance is a particularly difficult playground for deep reinforcement learning (DRL). Some existing works already
showed great potential of DRL in financial applications. However, establishing high-quality market environments and
benchmarks on financial reinforcement learning are challenging and highly demanded. Thus, we proposed and started
FinRL-Meta.

6.2 Envrionments and Benchmarks

MuJoCo and OpenAI’s XLand are famous libraries in the RL area, they built environments for deep reinforcement
learning in robotics, games, and common tasks that are widely used in RL academia and industry. However, they
barely provide any high quality environments for financial tasks. FinRL-Meta, previously called Neo-FinRL (near real
market environments for data driven financial RL), are working to provide hundreds of market environments and tens
of benchmarks for financial reinforcement learning.

6.3 Metaverse for financial RL

Achieving the goal of hundreds of market environments and benchmarks discribed above, we are aiming to build a
metaverse for financial reinforcement learning. Like XLand, we would provide an open-ended market world with
different tasks e.g. stock, cryptocurrency, etc. for agents to explore and learn.

6.4 Contribute to finance

We believe in the potential of deep reinforcement learning. And we hope that after we build the metaverse for financial
reinforcement learning, our agents have chance to be a market simulator, or to explore risk assessment or market
fragility.

23

FinRL Documentation, Release 0.3.1

24 Chapter 6. Background

CHAPTER

SEVEN

OVERVIEW

Following the de facto standard of OpenAI Gym, we build a universe of market environments for data-driven financial
reinforcement learning, namely, FinRL-Meta. We keep the following design principles.

7.1 1. Layered structure

We adopt a layered structure for RL in finance, which consists of three layers: data layer, environment layer, and agent
layer. Each layer executes its functions and is relatively independent. There are two main advantages:

1. Transparency: layers interact through end-to-end interfaces to implement the complete workflow of algorithm
trading, achieving high extensibility.

2. Modularity: Following the APIs between layers, users can easily customize their own functions to substitute
default functions in any layer.

25

FinRL Documentation, Release 0.3.1

7.2 2. DataOps Paradigm

DataOps paradigm is a set of practices, processes and technologies that combined: automated data engineering & agile
development. It helps reduce the cycle time of data engineering and improves data quality. To deal with financial big
data, we follow the DataOps paradigm and implement an automatic pipeline:

1. Task planning, such as stock trading, portfolio allocation, cryptocurrency trading, etc

2. Data processing, including data accessing and cleaning, and feature engineering.

3. Training-testing-trading, where DRL agent takes part in.

4. Performance monitoring, compare the performance of DRL agent with some baseline trading strategies.

With this pipeline, we are able to continuously produce dynamic market datasets.

7.3 3. Training-testing-trading pipeline:

We employ a training-testing-trading pipeline that the DRL approach follows a standard end-to-end pipeline. The DRL
agent is first trained in a training dataset and fined-tuned (adjusting hyperparameters) in a testing dataset. Then, backtest
the agent (on historical dataset), or deploy in a paper/live trading market.

This pipeline address the information leakage problem by separating the training/testing-trading periods the agent never
see the data in backtesting or paper/live trading stage.

And such a unified pipeline allows fair comparison among different algorithms.

26 Chapter 7. Overview

FinRL Documentation, Release 0.3.1

7.4 4. Plug-and-play

In the development pipeline, we separate market environments from the data layer and the agent layer. Any DRL agent
can be directly plugged into our environments, then will be trained and tested. Different agents can run on the same
benchmark environment for fair comparisons. Several popular DRL libraries are supported, including ElegantRL,
RLlib, and SB3.

7.4. 4. Plug-and-play 27

FinRL Documentation, Release 0.3.1

28 Chapter 7. Overview

CHAPTER

EIGHT

DATA LAYER

In the data layer, we use a unified data processor to access data, clean data, and extract features.

8.1 Data Accessing

We connect data APIs of different platforms and unify them using a FinRL-Meta data processor. Users can access data
from various sources given the start date, end date, stock list, time interval, and kwargs.

29

FinRL Documentation, Release 0.3.1

8.2 Data Cleaning

Raw data retrieved from different data sources are usually of various formats and have erroneous or NaN data (missing
data) to different extents, making data cleaning highly time-consuming. In FinRL-Meta, we automate the data cleaning
process.

The cleaning processes of NaN data are usually different for various time frequencies. For Low-frequency data, except
few stocks with extremely low liquidity, the few NaN values usually mean suspension during that time interval. While
for high-frequency data, NaN values are pervasive, which usually means no transaction during that time interval. To
reduce the simulation-to-reality gap considering of data efficiency, we provide different solutions for these two cases.

In the low-frequency case, we directly delete the rows with NaN values, reflecting suspension in simulated trading
environments. However, it is not suitable to directly delete rows with NaN values in high-frequency cases.

In our test of downloading 1-min OHLCV data of DJIA 30 companies from Alpaca during 2021–01–01~2021–05–31,
there were 39736 rows for the raw data. However, after dropping rows with NaN values, only 3361 rows are left.

The low data efficiency of the dropping method is unacceptable. Instead, we take an improved forward filling method.
We fill the open, high, low, close columns with the last valid value of close price and the volume column with 0, which
is a standard method in practice.

Although this filling method sacrifices the authenticity of the simulated environments, it is acceptable compared to
significantly improved data efficiency, especially under tickers with high liquidity. Moreover, this filling method can
be further improved using bid, ask prices to reduce the simulation-to-reality gap.

30 Chapter 8. Data Layer

FinRL Documentation, Release 0.3.1

8.3 Feature Engineering

Feature engineering is the last part of the data layer. We automate the calculation of technical indicators by connect-
ing the Stockstats or TAlib library in our data processor. Common technical indicators including Moving Average
Convergence Divergence (MACD), Relative Strength Index (RSI), Average Directional Index (ADX), and Commodity
Channel Index (CCI), and so on, are supported. Users can also quickly add indicators from other libraries, or add the
user-defined features directly.

Users can add their features by two ways: 1) Write user-defined feature extraction functions directly. The returned
features will be added to a feature array. 2) Store the features in a file, and move it to a specified folder. Then, these
features will be obtained by reading from the specified file.

8.3. Feature Engineering 31

FinRL Documentation, Release 0.3.1

32 Chapter 8. Data Layer

CHAPTER

NINE

ENVIRONMENT LAYER

FinRL-Meta follows the OpenAI gym-style to create market environments using the cleaned data from the data layer.
It provides hundreds of environments with a common interface. Users can build their environments based on FinRL-
Meta environments easily, share their results and compare the strategies’ performance. We will add more environments
for convenience in the future.

9.1 Incorporating trading constraints to model market frictions

To better simulate real-world markets, we incorporate common market frictions (e.g., transaction costs and investor
risk aversion) and portfolio restrictions (e.g., non-negative balance).

• Flexible account settings: Users can choose whether to allow buying on margin or short-selling.

• Transaction cost: We incorporate the transaction cost to reflect market friction, e.g., 0.1% of each buy or sell
trade.

• Risk-control for market crash: In FinRL, a financial turbulence index is used to control risk during market
crash situations. However, calculating the turbulence index is time-consuming. It may take minutes, which is
not suitable for paper trading and live trading. We replace the financial turbulence index with the volatility index
(VIX) that can be accessed immediately.

9.2 Multiprocessing training via vector environment

We utilize GPUs for multiprocessing training, namely, the vector environment technique of Isaac Gym, which signif-
icantly accelerates the training process. In each CUDA core, a trading agent interacts with a market environment to
produce transitions in the form of {state, action, reward, next state}. Then, all the transitions are stored in a replay buffer
to update a learner. By adopting this technique, we successfully achieve the multiprocessing simulation of hundreds of
market environments to improve the performance of DRL trading agents on large datasets.

33

FinRL Documentation, Release 0.3.1

34 Chapter 9. Environment Layer

CHAPTER

TEN

BENCHMARK

10.1 Performance Metrics

FinRL-Meta provides the following unified metrics to measure the trading performance:

• Cumulative return: 𝑅 = 𝑉−𝑉0

𝑉0
, where V is final portfolio value, and 𝑉0 is original capital.

• Annualized return: 𝑟 = (1 + 𝑅)
365
𝑡 − 1, where t is the number of trading days.

• Annualized volatility: 𝜎𝑎 =
√︁∑︀𝑛

𝑖=1 (𝑟𝑖−𝑟)2

𝑛−1 , where 𝑟𝑖 is the annualized return in year i, 𝑟 is the average annu-
alized return, and n is the number of years.

• Sharpe ratio: 𝑆 =
𝑟−𝑟𝑓
𝜎𝑎

, where 𝑟𝑓 is the risk-free rate.

• Max. drawdown The maximal percentage loss in portfolio value.

The following baseline trading strategies are provided for comparisons:

• Passive trading strategy, a well-known long-term strategy. The investors just buy and hold selected stocks or
indexes without further activities.

• **Mean-variance and min-variance strategy, both strategies look for a balance between risks and profits. It
selects a diversified portfolio to achieve higher profits at lower risk.

• Equally weighted strategy, a portfolio allocation strategy that gives equal weights to different assets, avoiding
allocating overly high weights on particular stocks.

10.2 Tutorials in Jupyter Notebooks

For educational purposes, we provide Jupyter notebooks as tutorials to help newcomers get familiar with the whole
pipeline. Notebooks can be found here

• Stock trading: We apply popular DRL algorithms to trade multiple stocks.

• Portfolio allocation: We use DRL agents to optimize asset allocation in a set of stocks.

• Cryptocurrency trading: We reproduce the experiment on 10 popular cryptocurrencies.

• Multi-agent RL for liquidation strategy analysis: We reproduce the experiment in [7]. The multi-agent optimizes
the shortfalls in the liquidation task, which is to sell given shares of one stock sequentially within a given period,
considering the costs arising from the market impact and the risk aversion.

• Ensemble strategy for stock trading: We reproduce the experiment in that employed an ensemble strategy of
several DRL algorithms on the stock trading task.

35

https://github.com/AI4Finance-Foundation/FinRL-Meta/tree/master/tutorials

FinRL Documentation, Release 0.3.1

• Paper trading demo: We provide a demo for paper trading. Users could combine their own strategies or trained
agents in paper trading.

• China A-share demo: We provide a demo based on the China A-share market data.

• Hyperparameter tuning: We provide several demos for hyperparameter tuning using Optuna or Ray Tune, since
hyperparameter tuning is critical for better performance.

36 Chapter 10. Benchmark

CHAPTER

ELEVEN

TUTORIALS GUIDE

Welcome to FinRL’s tutorial! In this section, you can walk through the tutorial notebooks we prepared. If you are new
to FinRL, we would suggest you the following sequence:

Mission: provide user-friendly demos in notebook or python.

Outline

1-Introduction: basic demos for beginners.

2-Advance: advanced demos, e.g., ensemble stock trading.

3-Practical: paper trading and live trading.

4-Optimization: hyperparameter tuning.

5-Others: other demos.

37

https://github.com/AI4Finance-Foundation/FinRL/tree/master/tutorials

FinRL Documentation, Release 0.3.1

11.1 1-Introduction

This section is recommend for new comers of FinRL. Users could better learn FinRL in the meantime of running these
notebooks.

1. Stock_NeurIPS2018.ipynb,

This is the notebook we recommend new users run first. It goes through a full process of DRL for stock trading using
FinRL.

2. China_A_share_market_tushare.ipynb

This notebook demonstrate using FinRL to connect Tushare, using its data of China A share market.

3. FinRL_PortfolioAllocation_NeurIPS_2020.ipynb

This notebook demonstrate using FinRL to do portfolio allocation.

11.2 2-Advance

This section is recommended for users with some familiarity of FinRL or FinRL-Meta (or already run the notebooks
in “1-Introduction”).

Notebooks in this section includes:

1. FinRL_Compare_ElegantRL_RLlib_Stablebaseline3.ipynb

In this notebook, we compare the three DRL libraries that supported in FinRL. Users who know these DRL libraries
might find this interesting.

2. FinRL_Ensemble_StockTrading_ICAIF_2020.ipynb

In this notebook, we implement an “ensemble agent”, which is a ensemble of several popular DRL algorithms. Then
we compare the performance of the ensemble agent and other DRL agents on the portfolio allocation task.

FinRL_PortfolioAllocation_Explainable_DRL.ipynb.

11.3 3-Practical

This section is recommended for users with some familiarity of FinRL or FinRL-Meta (or already run the notebooks in
“1-Introduction”). User could use the provided code for specific task, or design their own task based on existing code.

Notebooks in this section includes:

FinRL_MultiCrypto_Trading.ipynb,

In this notebook, we provide a demo of multiple cryptocurrency trading. It shows a whole process of how to use APIs
in FinRL and FinRL-Meta to do cryptocurrency trading.

FinRL_PaperTrading_Demo.ipynb.

In this notebook, we provide a demo of paper trading. It shows a whole process of using FinRL and FinRL-Meta to
connect to Alpaca to do paper trading. Note: User need to have their own Alpaca account to run this notebook.

38 Chapter 11. Tutorials Guide

https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/Stock_NeurIPS2018_SB3.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/China_A_share_market_tushare.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/1-Introduction/FinRL_PortfolioAllocation_NeurIPS_2020.ipynb
https://github.com/AI4Finance-Foundation/FinRL/blob/master/tutorials/2-Advance/FinRL_Compare_ElegantRL_RLlib_Stablebaseline3.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/2-Advance/FinRL_Ensemble_StockTrading_ICAIF_2020.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/2-Advance/FinRL_PortfolioAllocation_Explainable_DRL.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/3-Practical/FinRL_MultiCrypto_Trading.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/3-Practical/FinRL_PaperTrading_Demo.ipynb

FinRL Documentation, Release 0.3.1

11.4 4-Optimization

This section provideds examples of hyperperameter tuning and connecting cloud platform.

Notebooks in this section includes:

FinRL_HyperparameterTuning_Optuna.ipynb,

FinRL_HyperparameterTuning_Raytune_RLlib.ipynb,

FinRL_HyperparameterTuning_using_Optuna_basic.ipynb,

FinRL_Weights_and_Biasify_StableBaselines3.ipynb.

11.5 5-Others

This section collects uncategorized notebooks such as those made by community members or for some specific usage.

Notebooks in this section includes:

FinRL_demo_docker.ipynb,

tutorial_env_multistock_cashpenalty.ipynb,

tutorial_multistock_docker.ipynb,

tutorial_multistock_variant_2.ipynb,

tutorial_this_works_1_18.ipynb.

11.4. 4-Optimization 39

https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_Optuna.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_Raytune_RLlib.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_HyperparameterTuning_using_Optuna_basic.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/4-Optimization/FinRL_Weights_and_Biasify_StableBaselines3.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/FinRL_demo_docker.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_env_multistock_cashpenalty.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_multistock_docker.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_multistock_variant_2.ipynb
https://github.com/AI4Finance-Foundation/FinRL-Tutorials/blob/master/5-Others/tutorial_this_works_1_18.ipynb

FinRL Documentation, Release 0.3.1

40 Chapter 11. Tutorials Guide

CHAPTER

TWELVE

FILE ARCHITECTURE

FinRL’s file architecture strictly follow the Three-layer Architecture.

FinRL
finrl (the main folder)

applications
cryptocurrency_trading
high_frequency_trading
portfolio_allocation
stock_trading

agents
elegantrl
rllib
stablebaseline3

meta
data_processors
env_cryptocurrency_trading
env_portfolio_allocation
env_stock_trading
preprocessor
data_processor.py
finrl_meta_config.py

config.py
config_tickers.py
main.py
train.py
test.py
trade.py
plot.py

41

FinRL Documentation, Release 0.3.1

42 Chapter 12. File Architecture

CHAPTER

THIRTEEN

DEVELOPMENT GUIDE

Git is a commonly used tool in software engineering. PyCharm is a popular IDE for Python, and developers can also
choose other IDEs as they like. Now, we take PyCharm as an example. This setup with PyCharm makes it easy to
work on all of AI4Finance-Foundation’s repositories simultaneously, while allowing easy debugging, committing to
the respective repo and creating PRs/MRs.

13.1 Step 1: Download Software

-Download and install Anaconda.

-Download and install PyCharm. The Community Edition (free version) offers everything you need except running
Jupyter notebooks. The Full-fledged Professional Edition offers everything. A workaround to run existing notebooks
in the Community edition is to copy all notebook cells into .py files. For notebook support, you can consider PyCharm
Professional Edition.

-On GitHub, fork FinRL to your private Github repo.

-On GitHub, fork ElegantRL to your private Github repo.

-On GitHub, fork FinRL-Meta to your private Github repo.

-All next steps happen on your local computer.

13.2 Step 2: Git Clone

mkdir ~/ai4finance
cd ~/ai4finance
git clone https://github.com/[your_github_username]/FinRL.git
git clone https://github.com/[your_github_username]/ElegantRL.git
git clone https://github.com/[your_github_username]/FinRL-Meta.git

43

https://www.anaconda.com/
https://www.jetbrains.com/pycharm/
https://github.com/AI4Finance-Foundation/FinRL
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/AI4Finance-Foundation/FinRL-Meta

FinRL Documentation, Release 0.3.1

13.3 Step 3: Create a Conda Environment

cd ~/ai4finance
conda create --name ai4finance python=3.8
conda activate ai4finance

cd FinRL
pip install -r requirements.txt

Install ElegantRL using requirements.txt, or open ElegantRL/setup.py in a text editor and pip install anything you can
find: gym, matplotlib, numpy, pybullet, torch, opencv-python, and box2d-py.

13.4 Step 4: Configure a PyCharm Project

-Launch PyCharm

-File > Open > [ai4finance project folder]

-At the bottom right of the status bar, change or add the interpreter to the ai4finance conda environment. Make sure
when you click the “terminal” bar at the bottom left, it shows ai4finance.

44 Chapter 13. Development Guide

FinRL Documentation, Release 0.3.1

-At the left of the screen, in the project file tree:

• Right-click on the FinRL folder > Mark Directory as > Sources Root

• Right-click on the ElegantRL folder > Mark Directory as > Sources Root

• Right-click on the FinRL-Meta folder > Mark Directory as > Sources Root

13.4. Step 4: Configure a PyCharm Project 45

FinRL Documentation, Release 0.3.1

-Once you run a .py file, you will notice that you may still have some missing packages. In that case, simply pip install
them.

For example, we revise FinRL.

cd ~/ai4finance
cd ./FinRL
git checkout -b branch_xxx

where branch_xxx is a new branch name. In this branch, we revise config.py.

13.5 Step 5: New a Branch

Please new a new branch based on branch “staging” (NOT “master”), which is for all developers. DO NOT directly
push codes to the branch “staging” or “master”.

13.6 Step 6: Creating Commits and PRs/MRs

-Create commits as you usually do through PyCharm.

-Make sure that each commit covers only 1 of the 3 repo’s. Don’t create a commit that spans more than one repo, e.g.,
FinRL and ElegantRL.

46 Chapter 13. Development Guide

FinRL Documentation, Release 0.3.1

-When you do a Git Push, PyCharm will ask you to which of the 3 repos you want to push. Just like the above figure,
we select the repo “FinRL”.

With respect to creating a pull request (PR) or merge quest (MR), please refer to Create a PR or Opensource Create a
PR.

13.7 Step 7: Submit PRs/MRs

When submiting PRs/MRs, please choose the branch “staging”, NOT “master”.

13.7. Step 7: Submit PRs/MRs 47

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/creating-a-pull-request
https://opensource.com/article/19/7/create-pull-request-github
https://opensource.com/article/19/7/create-pull-request-github

FinRL Documentation, Release 0.3.1

13.8 Step 8: Merge “staging” to “master”

This step is for managers. If the branch “staging” is stable and works successfully after a series of tests, the managers
of this repo will merge it to the branch “master” every 2-4 weeks. To avoid any risk, we hope managers download the
“master” branch locally before merging.

48 Chapter 13. Development Guide

CHAPTER

FOURTEEN

CONTRIBUTING GUIDELINES

This project aims to bring a reinforcement learning environment to the trading community. There are always competing
priorities among the community, and we want to make sure that we are able to achieve together a project that is reliable,
sustainable, and maintainable.

14.1 Guiding Principles

• We should have reliable codes in this project
– reliable code with tests

– reliable code that works

– reliable code runs without consuming excessive resources

• We should help each other to achieve SOTA results together

• We should write clear codes
– Code should not be redundant

– Code should have documentation inline (standard pep format)

– Code should be organized into classes and functions

• We should leverage outside tools as it makes sense

• We work together, and are kind, patient, and clear in our communication. Jerks are not welcome.

If you see something, say something! * Filing an [issue](https://guides.github.com/features/issues/) is a great way
to help improve the project

14.2 Accepting PRs

• You found a bug and a way to fix it

• You have contributed to an issue that was prioritized by the coordinators of this project

• You have new functionality that you’re adding that you’ve written issues for and has documentation + Tests

49

https://guides.github.com/features/issues/

FinRL Documentation, Release 0.3.1

14.3 PR Guidelines

• Please tag @bruceyang, @spencerromo, or @xiaoyang in every PR. (P.S. we’re looking for more collaborators
with software experience!)

• Please reference or write and reference an [issue](https://guides.github.com/features/issues/)

• Please have clear commit messages

• Please write detailed documentation and tests for every added piece of functionality

• Please try to not break existing functionality, or if you need to, please plan to justify this necessity and coordinate
with the collaborators

• Please be patient and respectful with feedback

• Please use pre-commit hooks

14.4 Others

-Using pre-commit ` pip install pre-commit pre-commit install `

-Running Tests ``` -Locally python3 -m unittest discover

-Docker ./docker/bin/build_container.sh ./docker/bin/test.sh ```

50 Chapter 14. Contributing Guidelines

https://guides.github.com/features/issues/

CHAPTER

FIFTEEN

PUBLICATIONS

Papers by the Columbia research team can be found at Google Scholar.

51

https://scholar.google.com/citations?view_op=list_works&hl=en&hl=en&user=XsdPXocAAAAJ

FinRL Documentation, Release 0.3.1

Table 1: Publications
Title Conference Link Cita-

tions
Year

FinRL-Meta:
A Universe of
Near-Real Market
Environments for
Data-Driven Deep
Reinforcement
Learning in Quanti-
tative Finance

NeurIPS 2021
Data-Centric AI
Workshop

paper, code 2 2021

Explainable deep
reinforcement learn-
ing for portfolio
management: An
empirical approach

ICAIF 2021: ACM
International Con-
ference on AI in
Finance

paper, code 1 2021

FinRL-Podracer:
High performance
and scalable deep
reinforcement learn-
ing for quantitative
finance

ICAIF 2021: ACM
International Con-
ference on AI in
Finance

paper, code 2 2021

FinRL: Deep rein-
forcement learning
framework to au-
tomate trading in
quantitative finance

ICAIF 2021: ACM
International Con-
ference on AI in
Finance

paper, code 7 2021

FinRL: A deep
reinforcement
learning library
for automated
stock trading in
quantitative finance

NeurIPS 2020 Deep
RL Workshop

paper, code 25 2020

Deep reinforcement
learning for auto-
mated stock trading:
An ensemble strat-
egy

ICAIF 2020: ACM
International Con-
ference on AI in
Finance

paper, code 44 2020

Multi-agent rein-
forcement learning
for liquidation
strategy analysis

ICML 2019 Work-
shop on AI in Fi-
nance: Applications
and Infrastructure
for Multi-Agent
Learning

paper, code 19 2019

Practical deep rein-
forcement learning
approach for stock
trading

NeurIPS 2018
Workshop on
Challenges and Op-
portunities for AI in
Financial Services

paper, code 86 2018

52 Chapter 15. Publications

https://arxiv.org/abs/2112.06753
https://github.com/AI4Finance-Foundation/FinRL-Meta
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3958005
https://github.com/AI4Finance-Foundation/FinRL
https://arxiv.org/abs/2111.05188
https://github.com/AI4Finance-Foundation/FinRL_Podracer
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3955949
https://github.com/AI4Finance-Foundation/FinRL
https://arxiv.org/abs/2011.09607
https://github.com/AI4Finance-Foundation/FinRL
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3690996
https://github.com/AI4Finance-Foundation/Deep-Reinforcement-Learning-for-Automated-Stock-Trading-Ensemble-Strategy-ICAIF-2020
https://arxiv.org/abs/1906.11046
https://github.com/AI4Finance-Foundation/Liquidation-Analysis-using-Multi-Agent-Reinforcement-Learning-ICML-2019
https://arxiv.org/abs/1811.07522
https://github.com/AI4Finance-Foundation/DQN-DDPG_Stock_Trading

CHAPTER

SIXTEEN

EXTERNAL SOURCES

The following contents are collected and referred by AI4Finance community during the development of FinRL and
related projects. Some of them are educational and relatively easy while some others are professional and need advanced
knowledge. We appreciate and respect the effort of all these contents’ authors and developers.

16.1 Proof-of-concept

[1] FinRL: Deep Reinforcement Learning Framework to Automate Trading in Quantitative Finance Deep reinforcement
learning framework to automate trading in quantitative finance, ACM International Conference on AI in Finance, ICAIF
2021.

[2] FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance A deep
reinforcement learning library for automated stock trading in quantitative finance, Deep RL Workshop, NeurIPS 2020.

[3] Practical deep reinforcement learning approach for stock trading. NeurIPS Workshop on Challenges and Opportu-
nities for AI in Financial Services: the Impact of Fairness, Explainability, Accuracy, and Privacy, 2018.

[4] Deep Reinforcement Learning for Trading. Zhang, Zihao, Stefan Zohren, and Stephen Roberts. The Journal of
Financial Data Science 2, no. 2 (2020): 25-40.

[5] A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem. Jiang, Zhengyao,
Dixing Xu, and Jinjun Liang. arXiv preprint arXiv:1706.10059 (2017).

16.2 DRL Algorithms/Libraries

[1] Documentation of ElegentRL by AI4Finance Foundation.

[2] Spinning Up in Deep RL by OpenAI.

16.3 Theory

[1] Deep Reinforcement Learning: An Overview Li, Yuxi. arXiv preprint arXiv:1701.07274 (2017).

[2] Continuous-time mean–variance portfolio selection: A reinforcement learning framework. Mathematical Finance,
30(4), pp.1273-1308. Wang, H. and Zhou, X.Y., 2020.

[3] Mao Guan and Xiao-Yang Liu. Explainable deep reinforcement learning for portfolio man- agement: An empirical
approach. ACM International Conference on AI in Finance, ICAIF 2021.

[4] ICAIF International Conference on AI in Finance.

53

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3955949
https://arxiv.org/abs/2011.09607
https://arxiv.org/abs/1811.07522
https://arxiv.org/abs/1911.10107
https://arxiv.org/abs/1706.10059
https://elegantrl.readthedocs.io
https://spinningup.openai.com/
https://arxiv.org/abs/1701.07274
https://ai-finance.org

FinRL Documentation, Release 0.3.1

16.4 Trading Strategies

[1] Deep reinforcement learning for automated stock trading: an ensemble strategy. ACM International Conference on
AI in Finance, 2020.

[2] FinRL-Podracer: High performance and scalable deep reinforcement learning for quantitative finance. ACM Inter-
national Conference on AI in Finance, ICAIF 2021.

[3] Multi-agent reinforcement learning for liquidation strategy analysis, paper and codes. Workshop on Applications
and Infrastructure for Multi-Agent Learning, ICML 2019.

[4] Risk-Sensitive Reinforcement Learning: a Martingale Approach to Reward Uncertainty. International Conference
on AI in Finance, ICAIF 2020.

[5] Cryptocurrency Trading Using Machine Learning. Journal of Risk and Financial Management, August 2020.

[6] Multi-Agent Reinforcement Learning in a Realistic Limit Order Book Market Simulation. Michaël Karpe, Jin Fang,
Zhongyao Ma, Chen Wang. International Conference on AI in Finance (ICAIF’20), September 2020.

[7] Market Making via Reinforcement Learning. Thomas Spooner, John Fearnley, Rahul Savani, Andreas Koukorinis.
AAMAS2018 Conference Proceedings

[8] Financial Trading as a Game: A Deep Reinforcement Learning Approach Huang, Chien Yi. arXiv preprint
arXiv:1807.02787 (2018).

[9] Deep Hedging: Hedging Derivatives Under Generic Market Frictions Using Reinforcement Learning Buehler,
Hans, Lukas Gonon, Josef Teichmann, Ben Wood, Baranidharan Mohan, and Jonathan Kochems. Swiss Finance Insti-
tute Research Paper 19-80 (2019).

16.5 Financial Big Data

[1] FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in
Quantitative Finance. NeurIPS 2021 Data-Centric AI Workshop

16.6 Interpretation and Explainability

[1] Explainable Deep Reinforcement Learning for Portfolio Management: An Empirical Approach. Guan, M. and Liu,
X.Y.. ACM International Conference on AI in Finance, 2021.

16.7 Tools or Softwares

[1] FinRL by AI4Finance Foundation.

[2] FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven Deep Reinforcement Learning in
Quantitative Finance, by AI4Finance Foundation.

[3] ElegantRL: a DRL library developed by AI4Finance Foundation.

[4] Stable-Baselines3: Reliable Reinforcement Learning Implementations.

54 Chapter 16. External Sources

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3690996
https://arxiv.org/abs/2111.05188
https://arxiv.org/abs/1906.11046
https://github.com/WenhangBao/Multi-Agent-RL-for-Liquidation
https://arxiv.org/abs/2006.12686
https://www.mdpi.com/1911-8074/13/8/178
https://arxiv.org/abs/2006.05574
https://arxiv.org/abs/1804.04216
https://arxiv.org/abs/1807.02787
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3355706
https://arxiv.org/abs/2112.06753
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3958005%3B
https://github.com/AI4Finance-Foundation/FinRL
https://github.com/AI4Finance-Foundation/FinRL-Meta
https://github.com/AI4Finance-Foundation/ElegantRL
https://github.com/DLR-RM/stable-baselines3

FinRL Documentation, Release 0.3.1

16.8 Survey

[1] Recent Advances in Reinforcement Learning in Finance. Hambly, B., Xu, R. and Yang, H., 2021.

[2] Deep Reinforcement Learning for Trading—A Critical Survey. Adrian Millea, 2021.

[3] Modern Perspectives on Reinforcement Learning in Finance Kolm, Petter N. and Ritter, Gordon. The Journal of
Machine Learning in Finance, Vol. 1, No. 1, 2020.

[4] Reinforcement Learning in Economics and Finance Charpentier, Arthur, Romuald Elie, and Carl Remlinger. Com-
putational Economics (2021): 1-38.

[5] Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics Mosavi, Amirho-
sein, Yaser Faghan, Pedram Ghamisi, Puhong Duan, Sina Faizollahzadeh Ardabili, Ely Salwana, and Shahab S. Band.
Mathematics 8, no. 10 (2020): 1640.

16.9 Education

[1] Coursera Overview of Advanced Methods of Reinforcement Learning in Finance. By Igor Halperin, at NYU.

[2] Foundations of reinforcement learning with applications in finance by Ashwin Rao, Tikhon Jelvis, Stanford Uni-
versity

16.8. Survey 55

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3971071
https://www.mdpi.com/2306-5729/6/11/119
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3449401
https://arxiv.org/abs/2003.10014
https://www.mdpi.com/2227-7390/8/10/1640
https://www.coursera.org/learn/advanced-methods-reinforcement-learning-finance
https://stanford.edu/~ashlearn/RLForFinanceBook/book.pdf

FinRL Documentation, Release 0.3.1

56 Chapter 16. External Sources

CHAPTER

SEVENTEEN

FAQ

Version
0.3

Date
05-29-2022

Contributors
Roberto Fray da Silva, Xiao-Yang Liu, Ziyi Xia, Ming Zhu

This document contains the most frequently asked questions related to FinRL, which are based on questions posted on
the slack channels and Github issues.

17.1 Outline

• 1-Inputs and datasets

• 2-Code and implementation

• 3-Model evaluation

• 4-Miscellaneous

• 5-Common issues/bugs

17.2 1-Inputs and datasets

•

Not yet. We’re developing this functionality

•

Not yet. We’re developing this functionality

•

Not yet. We’re developing this functionality

•

Not yet

•

Yahoo Finance (through the yfinance library)

57

https://github.com/AI4Finance-Foundation/FinRL

FinRL Documentation, Release 0.3.1

•

Yahoo Finance (only up to last 7 days), through the yfinance library. It is the only option besides
scraping (or paying for a service provider)

•

No, as this is more of an execution strategy related to risk control. You can use it as part of your
system, adding the risk control part as a separate component

•

Yes, you can add it. Remember to check on the code that this additional feature is being fed to the
model (state)

•

No, you’ll have to use a paid service or library/code to scrape news and obtain the sentiment from
them (normally, using deep learning and NLP)

17.3 2-Code and implementation

•

Yes, it does

•

Yes, because the current parameters are defined for daily data. You’ll have to tune the model
for intraday trading

•

Not many yet, but we’re working on providing different reward functions and an easy way
to set your own reward function

•

Yes, but none is available at the moment. Sometimes in the literature you’ll find this referred
to as transfer learning

•

Each model has its own hyperparameters, but the most important is the total_timesteps
(think of it as epochs in a neural network: even if all the other hyperparameters are optimal,
with few epochs the model will have a bad performance). The other important hyperparam-
eters, in general, are: learning_rate, batch_size, ent_coef, buffer_size, policy, and reward
scaling

•

There are several, such as: Ray Tune and Optuna. You can start from our examples in the
tutorials

•

We suggest using ElegantRL or Stable Baselines 3. We tested the following models with suc-
cess: A2C, A3C, DDPG, PPO, SAC, TD3, TRPO. You can also create your own algorithm,
with an OpenAI Gym-style market environment

•

58 Chapter 17. FAQ

FinRL Documentation, Release 0.3.1

Please update to latest version (https://github.com/AI4Finance-LLC/FinRL-Library), check
if the hyperparameters used were not outside a normal range (ex: learning rate too high),
and run the code again. If you still have problems, please check Section 2 (What to do when
you experience problems)

• raw-html
What to do when you experience problems?

1. Check if it is not already answered on this FAQ 2. Check if it is posted on the GitHub repo issues. If
not, welcome to submit an issue on GitHub 3. Use the correct channel on the AI4Finance slack or Wechat
group.*

• raw-html
Does anyone know if there is a trading environment for a
single stock? There is one in the docs, but the collab link seems to be broken.

We did not update the single stock for long time. The performance for single stock is not
very good, since the state space is too small so that the agent extract little information
from the environment. Please use the multi stock environment, and after training only
use the single stock to trade.

17.4 3-Model evaluation

•

Not exactly. Depending on the period, the asset, the model chosen, and the hyperparameters used, BH
may be very difficult to beat (it’s almost never beaten on stocks/periods with low volatility and steady
growth). Nevertheless, update the library and its dependencies (the github repo has the most recent
version), and check the example notebook for the specific environment type (single, multi, portfolio
optimization) to see if the code is running correctly

•

We use the Pyfolio backtest library from Quantopian (https://github.com/quantopian/pyfolio), espe-
cially the simple tear sheet and its charts. In general, the most important metrics are: annual returns,
cumulative returns, annual volatility, sharpe ratio, calmar ratio, stability, and max drawdown

•

There are several metrics, but we recommend the following, as they are the most used in the market:
annual returns, cumulative returns, annual volatility, sharpe ratio, calmar ratio, stability, and max
drawdown

•

We recommend using buy and hold (BH), as it is a strategy that can be followed on any market and
tends to provide good results in the long run. You can also compare with other DRL models and
trading strategies such as the minimum variance portfolio

17.4. 3-Model evaluation 59

https://github.com/AI4Finance-LLC/FinRL-Library/issues

FinRL Documentation, Release 0.3.1

17.5 4-Miscellaneous

•

1. Read the documentation from the very beginning 2. Go through * `tutorials
<https://github.com/AI4Finance-Foundation/FinRL/tree/master/tutorials>`_ *3. read our papers

•

This is available on our Github repo https://github.com/AI4Finance-LLC/FinRL-Library

•

Participate on the slack channels, check the current issues and the roadmap, and help
any way you can (sharing the library with others, testing the library of different mar-
kets/models/strategies, contributing with code development, etc)

•

Please read 1-Inputs and datasets

•

Please read 4-Miscellaneous

•

Please check our development roadmap at our Github repo:
https://github.com/AI4Finance-LLC/FinRL-Library

•

FinRL aims for education and demonstration, while FinRL-Meta aims for building financial
big data and a metaverse of data-driven financial RL.

17.6 5-Common issues/bugs

• Package trading_calendars reports errors in Windows system:
Trading_calendars is not maintained now. It may report errors in Windows system (python>=3.7). These
are two possible solutions: 1). Use python=3.6 environment. 2). Replace trading_calendars with ex-
change_caldenars.

60 Chapter 17. FAQ

https://github.com/AI4Finance-LLC/FinRL-Library

	Introduction
	First Glance
	Three-layer Architecture
	1. Stock Market Environments
	2. DRL Agents
	ElegantRL: DRL library

	3. Applications

	Installation
	MAC OS
	Step 1: Install Anaconda
	Step 2: Install Homebrew
	Step 3: Install OpenAI
	Step 4: Install FinRL
	Step 5: Install box2d (if using box2d)
	Step 6: Run FinRL

	Ubuntu
	Step 1: Install Anaconda
	Step 2: Install OpenAI
	Step 3: Install FinRL
	Step 4: Install box2d (if using box2d)
	Step 5: Run FinRL

	Windows 10
	Prepare for install
	Step 1: Clone FinRL
	Step 2: install dependencies
	Step 3: Install box2d (if using box2d)
	Step 4: test (If using YahooFinance in China, VPN is needed)
	Tips for running error

	Windows 10 (wsl install)
	Step 1: Install Ubuntu on Windows 10
	Step 2: Install Anaconda
	Step 3: Install OpenAI
	Step 4: Install FinRL
	Step 5: Install box2d (if using box2d)
	Step 6: Run FinRL

	Quick Start
	Background
	Why FinRL-Meta?
	Envrionments and Benchmarks
	Metaverse for financial RL
	Contribute to finance

	Overview
	1. Layered structure
	2. DataOps Paradigm
	3. Training-testing-trading pipeline:
	4. Plug-and-play

	Data Layer
	Data Accessing
	Data Cleaning
	Feature Engineering

	Environment Layer
	Incorporating trading constraints to model market frictions
	Multiprocessing training via vector environment

	Benchmark
	Performance Metrics
	Tutorials in Jupyter Notebooks

	Tutorials Guide
	1-Introduction
	2-Advance
	3-Practical
	4-Optimization
	5-Others

	File Architecture
	Development Guide
	Step 1: Download Software
	Step 2: Git Clone
	Step 3: Create a Conda Environment
	Step 4: Configure a PyCharm Project
	Step 5: New a Branch
	Step 6: Creating Commits and PRs/MRs
	Step 7: Submit PRs/MRs
	Step 8: Merge “staging” to “master”

	Contributing Guidelines
	Guiding Principles
	Accepting PRs
	PR Guidelines
	Others

	Publications
	External Sources
	Proof-of-concept
	DRL Algorithms/Libraries
	Theory
	Trading Strategies
	Financial Big Data
	Interpretation and Explainability
	Tools or Softwares
	Survey
	Education

	FAQ
	Outline
	1-Inputs and datasets
	2-Code and implementation
	3-Model evaluation
	4-Miscellaneous
	5-Common issues/bugs

